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PREFACE

The work which is reported herein is a combined theoretical and experi-
mental effort.

Among the many who participated creatively and effectively in this
program were V. H. Weston, A. W. Wren, R. E. Kovac, M. J. Rycus, E. LeBaron,
R. A. Henry, and H. E. Brooks. Professor E. F. Masur, of the Engineering
Mechanics Department, University of Michigan, wrote Appendices B and C.
Most of the numerical work was performed on Conductron's IBM 1620 computer.

[ < /et

R. K. Ritt
Project Manager
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1. INTRODUCTION

This report is written at the conclusion of the second phase of studies
and measurements performed by Conductron Corporation for NASA, GSFC, under
Contract No. NAS 5-3232. The work done in the first phase, Balloon Segment
Measurements, has previously been reported (Conductron Report No. 0038-2-A-F),
and will, in the present report, be further discussed and related to the
second phase work.

The second phase program has consisted of several separate, but related
tasks, which we shall now describe in general terms, and which shall be dis-
cussed in detail below.

Task 1. To postulate a balloon structure, on the basis of experimental
and theoretical materials studies supplied to Conductron by NASA, and from
this postulated structure to predict the reflectivity of the balloon as a
function of surface stress, frequency, polarization, and viewing aspect.
Further, to examine these material studies to compare with conclusions inde-
pendently arrived at by Conductron.

Task 2. To perform radar reflectivity measurements on the inflated
balloon during Static Inflation Tests at Lakehurst NAS; to reduce data
obtained, and from the reduced data to determine the radar reflectivity
properties of the balloon as a function of surface stress, frequency, polari-
zation, and viewing aspect.

Task 3. To predict the radar reflectivity properties of the inflated
balloon, as a function of surface stress, frequency, polarization, and view-
ing aspect, on the basis of photogrammetric measurements made during the
Static Inflation Tests, and supplied to Conductron by NASA.

These tasks were formulated by NASA as components of a program whose
overall objective is to develop and establish means of estimating flight
pefformance of passive communications satellites on the basis of pre-flight
experiments, and to provide guidelines in the selection of satellite mate-
rials, fabrication, and deployment techniques. Although the NASA-Conductron

rogram which this report describes is concerned primarily with the A-12
%Echo II) satellite, the techniques developed are not limited to a particular
passive system.




C onc[ uctron C orporalion

2. THEORETICAL CONSIDERATIONS

The theoretical question which underlies most of the work done during
this phase has been:

Given the shape of a conducting surface, and a given source of electro-
magnetic energy, what is the electromagnetic field observed at an arbitrary
point not on the surface?

This question, of course, is the central problem in electromagnetic
theory. In this section, a mathematical formulation of the problem is given
which is particularly appropriate to the balloon configuration with which we
are dealing. By this is meant that when this formulation is completed, and
the balloon and the operating frequencies specified, approximations which
lead to numerical answers can readily be made.

Certain preliminary remarks are necessary. Let the time dependence of
the electromagnetic field be harmonic, with frequency f cycles/sec. Let
= 2nf. Then the electric and magnetic components of the field can be
represented, respectively, as

-imt

e

(x, y, 2) e
and

-int

E(x: y, 2) e '

E and H are complex vectors. Let k = 9, where ¢ = velocity of light
in vacuo, and let units be chosen so that the permeability and permittivity
ree space are both unity. Then E and H satisfy the Maxwell equations:

UXE-1ikH=0
} (1)
UXH+1ikE=0

Let E( i) and H( i) be the field components which would be present if just the
energy source, but not the conducting surface, were %resent. In any re%lon
H

of space which excludes the source, the pair E( i) 1) satisfy (1). E i)

and H i) are called the incident fields.

In the presence of the conducting body, the total field E, H, has the

form:
= E i + E
INESIRNCY } (@)

[ X=z]

==
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E(S) and H(S) are called the scattered fields. The scattered field is gener-
ated by currents induced on the conducting surface. If the surface is per-
fectly conducting, the value of the current, J (x, Yy, z), at a point on the
surface, is given by the formula -

d (X: ¥, z) = n (X: ys 2) X H (X, ys 2) (3)

In (3), ff (x, y, z) is the outward normal to the surface, and H is the total
magnetic field.

LetAthe position vector of a point (x, ys z) be designated by T=xX+

Yy + z z, wvhere x, y, z are the unit coordinate vectors. The scattered mag-
netic field can be represented by the formula:

0 -2 [ e} (R

ik|r - ?ll R
e d S(rl)

(4)

In (4) the integral is taken gver the surface of the perfectly conducting
body. The surface current J(r) must satisfy the equation:

IG) =2 A xxP@1 - La @) x [
° (5)

{g(?l) X (% - }’l)} { i U l} eikl?_?l,ds(?l)

The derivation of equation (4) can be found in "Electromagnetic Theory",

J. A. Stratton, pp. L60-4ES. Tt depends upon equation (1) and the fact that
at the perfectly conducting surface, the tangential component of the total
field must vanish. The derivation of (5) is implicit in this same section
of Stratton; it can be found explicitly in Maue [Zeit f Physik, 126 (1949)7.

Equations (4) and (5) provide a formulation of the problem.  Given the
incident magnetic field, H(ls, and the surface, S, a solution J(r) must be
found for (5). Then this solution must be inserted info,the integral (k4);
the resulting integration gives the scattered field, H S)(r).

Equation (5) is an integral equation for J(¥). In principle it has a
unique solution, but in practice this solution, except for some very special
cases, cannot be represented in a form which is amenable to numerical calcu-
lation. It is now appropriate to discuss the approximation to g(r) when S
is a balloon-like structure.
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2.1 THE SOURCE FIELD, g(i)(’r’)

The incident field is created by a distribution of currents located in a
finite volume V. If some point within this volume is chosen to be the center
of a fixed coordinate system, then analogous to (4), the incident field can
be represented as an integral:

@ - L ] {6 x @ -7}
\%

1 r-rr - 1K Y=Y
{ 1 } e 1 d V(_;l)

—> "N "~ . .
Let r = R u, where u is a unit vector. Then,

1im R e PR y() (3 - i—: f/] {J(i)(}’l) x ﬁ} e_ikﬁ{;l av(z,)
v

R -

(7)
=F ()

In (7) F{(Q) is a vector which depends only on @, and which is perpendicular
to fi. We rewrite (7) in the form

. ikR
g“NRﬁ)~eR F(8) (8)

If the source is a high gain antenna, |£(ﬁ)| will have a maximum for a fixed
direction, @y, it will be approximately constant for a set of directions
satisfying the inequality

a - ﬁo > cos B/2,

and very small, relative to [F(ﬁo)], if § . 8, < cos B/2. The angle B is
called the beamwidth of the antenna. If the antenna is constructed so that
the only contributions made to F(8) in the integral (7) come from currents
with a fixed direction, ﬁl’ then F(i) = 6(Q) P, where § = ﬁl X 1.

Then for directions i within the beam (i.e., @ ﬁo > cos B/2),
ikR

g(i)(R i) ~ < 6(8) $.
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This represents a spherical wave, propagating radially, with wavelength

n = 2%, The constant phase surfaces are spheres, and for large values of R,

can be approximated by planes. Therefore, it is conventional,. if the surface
S'_%sqlocated within the beam, and if R is sufficiently large, to replace
(i (r) by a linearly polarized plane wave,

(i) - ikﬁo'?
H/(r) ~ e p,» where =5, X @ .

As far as the surface of the scatterer is concerned, the only difference be-
tween this field and the true incident field is the constant numerical factor

8(8,) » and since the integral equation (5) is linear, the solution is changed
by multiplication by this constant factor. If the coordinate system is
changed so that the center of coordinates is at the scatterer instead of at
the source, the representation for the incident plane wave is then

—-ik{l r

@) e © B, (9)

Therefore, in the discussion of the reflectivity properties of the balloon,

the incident magnetic field will be taken to be of the form (9). The crite-

rion for the permissibility of this replacement is a measure of the deviation,

over the region occupied by the scatterer, of the true spherical wave front

and the plane wave front. This criterion is called the far zone criterion,

and is usually defined by the requirement that
L °

R >> —— (10)

where d is the largest dimension of the scatterer perpendicular to the beam.

2.2 APPROXIMATE SOLUTION TO (5)

If E(l)(?) is a plane wave, (9), and if the scatterer is a convex sur-
face, it is possible to define the illuminated and the shadow region. Refer-
ring to Figure 1

Figure 1
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The direction of propagation is - (i , the shaded region is the shadow region,
and the unshaded region is the illufinated region. It has been shown by

V. A. Fock [Journal of Physics, USSR, 10, 130-136 (1946)] and more rigorously
by J. A. Cullen [Phys. Rev., 109, 6, 1863-1867 (1958)] that as k - o, the
solution, g(?) has the limiting form

IF) = (11)

-{ 2 8 () x H(i>(?) in illuminated region-}

0 in shadow region

This is the classical geometric optics solution; when t%iﬁ solution is sub-
stituted into (L), the resulting representation for (i (r) is called the
physical optics integral.

2.3 THE VALIDITY OF THE PHYSICAL OPTICS INTEGRAL

The theoretical calculati?ni Berformed by Conductron on the Echo II
balloon have been to compute H 1/(r) by means of the physical optics inte-

gral. The justification for this is based both on elementary physical con-
siderations as well as rigorous information based on the Fock theory.

The obvious physical justification for using (11) to represent the
current distribution can be obtained by the examination of equation (5).
if S were an infinite plane the vectors J(r,) and ¥ - ¥, in the_ integral
would both lie in the plane, and therefore %he cross-product fi(r) %
[J(Z,) x (¥ - 7.)] would vanish for all, ¥;. Thus, for S an infinite plane,
the exact solution of (5) 13 2 8(7) % H(l%?), this being independent of
either k or the form of H(1 (?). Qualitatively, one sees that if the sur-
face deviates only slightly from being a plane, this representation con-
tinues to be a good approximation. The question arises: what is meant by
"deviates slightly from being a plane”? Since Maxwell's equations are un-
altered if the distance scale and the wavelength 2n/k are multiplied by the
same factor, it is clear that if a is a distance which plays a role in the
description of the fields, then the product ka must be preserved if the
fields are to be unaltered. Since the deviation of a surface from being a
plane is measured by its principal radii of curvature, the statement that
the surface "deviates slightly from being a plane' can be equated to the
statement that "ka must be large", where a is either of the principal radii
of curvature. Although the above dimensional argument is not at all
rigorous, it contains the physical reasoning which has been used to justify
the use of physical optics to compute radar reflectivity.

Historically, the physical optics integral has been used to calculate
the numerical values of the fields scattered by a great number of perfectly
conducting bodies. Because the justification for using the method is in
general the intuitive argument given above, the success of the method has
been measured in terms of comparison with experiment or with exact solutions,
when they can be found.

The geometric optics solution to (5), given by (11) implies, in general,
a discontinuity in the current at the boundary between the illuminated and

6
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shadow region, called the shadow boundary. When this solution is inserted in-
to the integral (4), the evaluation of the integral may sometimes be accom-
plished by an integration by parts in which the values of J(r) at the shadow
boundary appear explicitly. When the curve orthogonal to the shadow boundary
has finite curvature, such as in the case of the sphere, this contribution is
spurious. In the case in which the shadow boundary has infinite curvature,

as with a flat plate, or an infinite plare with a hole, the solution {11) does
not take into account edge currents.

In the case of the curve orthogonal to the shadow boundary having finite
curvature the work of Fock gives a rigorous criterion for the use of the cur-
rent (11) in the evaluation of (4). In a joint paper with M. Leontovitch
lJournal of Physics, X, 13 (1946)] and in the paper referred to above, he
established that the value of J(¥), in fact, varied continuously from approxi-
mately its geometric optics value in the illuminated region to approximately
its zero value in the shadow region, the variation taking place in the penum-
bra region, a region of width

where R is the radius of curvature of the geodesic in the direction of the
propaga%ion vector as it crosses the shadow boundary (see Figure 2)

P ies . . .
J{r) ~ geometric optics value

— (] ~-—

JT) ~ 0

penumbra region
Figure 2

In the case of a sphere, for example, with R0 = a, the width of the
penumbra region is

2 2 \1/
Thus, the area of the penumbra ~ 2 n a“ ( )13

=y . Because the magnitude of

the geometric optics current does not depend upon k, this shows that the

7
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field computed by means of the physical optics integral is related to the true
field by a relationship

1)) |

= H(S>(¥) {1+ O(Eka]“l/3)}, (13)

True Physical Optics

where 0{x) is a function which, when multiplied by x, remains bounded as
X = 0.

In general, for a perfectly conductin;,body, the error incurred in using
the physical optics integral is O([k R =173 , where R is the smallest radius
of curvature of geodesics along the difection of propa%ation when they cross
the shadow boundary. From the above definition of 0(x) it should be observed
that this is an upper bound on the error.

It should further be observed that this criterion for the use of physical
optics is less restrictive than the intuitive criterion stated above. It
only requires that the numbers ka be large at the shadow boundary and not
necessarily at all points in the illuminated region. The work of Fock refers,
strictly, only to convex bodies. For such bodies it is rigorously true that
for plane wave incidence the physical optics field will be in error as de-
scribed above. In a later paper, [ZETE, 20, 961-978 (1950)] this result was
generalized to include incident fields of spherical type.

In the work performed by Conductron in the present phase, two models of
the Echo II balloon have been considered. The first is that of a convex body
determined by various materials studies. To this model the above discussion
applies. The second model is that of a 'perturbed" sphere: namely, a surface
having the equation:

x = la+ 8(8, ©)] sin 6 cos @
y = [a +8(¢, ¢)] sin 6 sin ¢
z=1la+8(F, )l cos 6, 0<6<x, 0<0<2x (1)

in which |8| << a.

The values of 8(6, ®) were obtained from photogrammetric measurements per-
formed during the Static Inflation Tests.

Although the theory of statistically rough surfaces has been studied
extensively, and the statistics of the balloon surface could be obtained by
measurement of the values of 8(8, @), the answers to questions about statis-
tically rough surfaces are statistical answers. Since not just the statis-
tics of 8(6, @) was known, but 8(6, @) itself was known, it was felt that a
better result than a statistical one could be obtained. Therefore it was
decided to attempt to extend the work of Fock to find conditions under which
the use of the physical optics integral could be justified for the surface
(14). It was conjectured that if the principal radii of curvature remained
large in comparison to the wavelength, and if except for points in the
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penumbra region no shadows for geometric rays existed, that the physical
optics solution could be used. This conjecture was verified and is included
as Appendix E.

2.4 THE PHYSICAL OPTICS INTEGRAL

If{g(;) is taken to be the geometric optics solution, (11), and if E(l)
is a linearly polarized plane wave, then the physical optics integral can
be written:

S r-r

ik or 2k[rE |
e ° e dS(rl)

where the integration is extended over the illuminated region. Let G* be a
unit vector and let r = R 4*. Then

lim R e
R-> o

. -ik[f x 6%].F
-3 ey« xem}e o b as@,) (15)

If u® = ﬁo’ so that the field is being observed in the backscattered direc-
tion, because ﬁo - p =0, (15) has the simplified representation

-ikR H(S)(R )

lin R e IR g(s) (R &)

R >
. R -2ik(@ 17,
S ff{(ﬁ 7,) - ﬁo}ﬁe as(z,) -

2.5 THE RADAR CROSS SECTION

For a spherical wave, and in the units chosen, the power flux in the
direction of propagation is ]E]Z. [See Stratton, p. 457] If an incident
plane wave, N

(i) —1kuo'r -
H =Ae P

illuminates a body and if E(S)(?), a spherical wave is the scattered field,
then the quantity

2
lim xR “2R |g<s>(R ’ﬁ*)l‘2
R > A
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is called the bistatic radar cross section; G(ﬁc, i*), of the scatterer.
Physically, it represents the power radiated pe¥ unit solid angle in the
direction fi* as compared to the power incident upon the scatterer. It
obviously has the dimensions of area, and when G* = i , jt is called the

. : ' il$)(Z) is gi
back-scattered cross section, or the echo area. If H (r) is given by
the physical optics integral, the cross section is

\ 2 -1kl %] -'fl (2
A0 O3 - ‘ Lot -~ g N adh Y
(G, 0%) = — .Jngn(rl) X P ) X 0% e dS\rl)l

10
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3. BALLOON MATCLRIALS STUDY AND
POSTULATED BALLOON STRUCTURL

Conductron was provided, by NASA, with copies of the following reports:
A)  "Structural Analysis of Echo II to Predict the Surface Configura-

tion", Final Report NAS 5-2365, January 1963, Fairchild Stratos
Corporation.

B) "Structural Analysis of Echo II", Interim Report No. 1, NAS 5-3229,
May 1963, Astro Research Corporation.

Our objective, in this part of the program, was two-fold:
(a) To postulate a balloon structure consistent with the analyses and
predictions made in A) and B) and to perform theoretical calculations to

determine the radar cross-section of this structure.

(b) To prbvide NASA with a critical evaluation of the reports A) and B).

3.1 THE BALLOON STRUCTURE

The Echo II balloon is constructed of 106 nominally identical gores of a
three layer laminate, the outer layers being aluminum, the inner layer mylar.
These gores are initially cut from a flat sheet, and are joined together by
taped seams. The polar regions are covered by "polar caps" of the balloon
material. In the operational balloon, four gores (two diametrically opposite
pairs of adjacent gores) are reinforced to support telemetry equipment.

These reinforced gores are not considered in the present discussion.

Figure 3 (Not Scale)

11
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Figure 3 illustrates the configuration of a typical gore relative to the polar
caps and the nominal spherical shape.

Figure k4

Figure 4 illustrates a typical latitudinal section corresponding to the
dotted curve in Figure 3. The dots represent the seams.

The mathematical model chosen for each gore can be described in terms
of Figure 5.

Figure 5

The figure represents the gore in the upper hemisphere. The gore it-
self is bounded by the arcs AC, BC, and the arc AB is in the equatorial
plane. The arcs AC, BC are circular arcs having the radius, a, of the nomi-
nal sphere (a = 67.5 ft). The points P and P' have the same height above the
equatorial plane. The plane determined by POP' intersects the surface of the
gore in a curve PP'. This arc PP' is a circular segment with a radius R
which is independent of the height of P and P' above the equatorial plane.
The orthogonal trajectories to the arcs PP' are a family of circular arcs of
which the arcs AC, BC, and CD are particular members. The radii of these
circular arcs are, in general, different for different members of the family.
The contrary is true only when the gore is a spherical segment. However,
the largest possible value of this radius is a, and the smallest possible
value is the perpendicular distance from O to the chord AB. The angle

o . .
AUB = %g% = 3-”0, corresponding to the fact that there are 106 gores.

12
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The value of R varies from R = a to R = . This last value is the
limiting case in which the "arcs" PP' become straight lines, and the gore is
"flat". The selection of R was made by using the conclusions of report B)

referred to above. The contours predicted in that report were actually fitted
better by parabolas than by circles, but the radius of curvature along the
parabola did not vary enough to effect, numerically, the assumption that it
was, in fact, constant.

The calculations were submitted to NASA in the form of a technical
report, and is included as Appendix A 6f the present report.

3.2 MATERTAL BEHAVIOR ANALYSIS

The purpose of the analysis in report A) was to “predict the surface
configuration of the satellite when the internal pressure differential has
been increased to various levels and reduced to zero pressure differentiated
in a zero-g field."

This analysis depended first upon performing experiments to obtain the
stress—strain curve for the material by experimental tests, and to determine
the elastic modulus and the inelastic range. Using this data, a typical
gore configuration was analyzed using membrane theory.

In Appendix B is found the Conductron discussion of the Fairchild
Stratos Report. The principal issue taken by Conductron with this report is
the failure to take into account the boundary layer analysis required in the
neighborhood of the seams. Technically, this failure consists of neglecting,
in the relevant differential equations those terms containing higher powers
of t, where t is the skin thickness, and the linearization of the equations.
To illustrate the effect of this over-simplification, in Section B.3 of
Appendix B, the analogous problem for a cylindrical, rather than a spherical
structure, is investigated. The choice of this problem was not based on any
direct relevance of the solution to the Echo II satellite, but to illustrate,
in a case in which the analysis can be completely performed, the effect of
linearization of the equations and neglect of the higher order terms.

The purpose of report B) was to predict the "departure of satellite
skin from spherical shape" by applying analysis to experimental data. The
Conductron discussion of the Astro Report is contained in Appendix C. The
principal disagreement of Conductron with this report is its assumption,
in considering the displacement of the balloon from its nominal spherical
configuration, that material points move only in the radial direction.
Other disagreements can be found and are explicitly stated in Appendix C,
but this principal disagreement is crucial. In this appendix, an analysis
is performed in which the displacements and membrane forces are computed.
It is shown that the meridional curves are not circles, as predicted by the
Astro report, but that they are "flattened", and the amount of flattening
is explicitly determined.

13
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4. STATIC INFLATION TESTS

During the months of July and August three Echo II balloons, Nos. 9, 11,
and 13, were inflated within the large dirigible hangar at Lakehurst NAS.
Conductron performed radar cross section measurements on the three balloons
and submitted Technical Report No. 0038-4-T to NASA describing the measure-
ment program and the data reduction. This technical report is included here-
in as Appendix D.

Figure 6 is a scale drawing of the measurement configuration as viewed
from above. The balloon is represented by the circle with center at O. The
arc Ty, T_ is a circular arc subtending the angle T, O T, = 30°. This arc
represen%s a platform elevated approximately 50'. ~On elther end of the plat-
form are mounted transmitting antennas at T, and T, aligned to propagate in
the direction T, 0 and T. 0, respectively. The receiving antenna moves along
the track, aligned always to point at O, and the measurement is bistatic, the
bistatic angle being T,OR or g OR dependent upon which transmitter is acti-
vated. The plane T TR is 10 "below the equatorial plane. The frequencies
used were 1.31 KMC, 5.85 KMC, 5.65 KMC. A description of the meazurement
sequence and calibration is given in Appendix D.

4.1 EXPERIMENT DESIGN

The first fact to be recognized in planning the measurements was that
in no way could measurements be performed in the far zone of the sphere.
The results of Appendix A show that the field contribution of the scattering
by at least three adjacent gores are necessary to give the correct radar
cross-section. The width across these gores is ~~N10 meters; consequently,
at C band thelgar zone of the sphere is defined by a range which is much
greater than fr ~ 200 meters.

However, previous work by V. H. Weston [Trans. IRE, PGAP, AP-7, L43-51
(1959) 1, had shown that for spheres whose diameter is large in comparison to
wavelength, the near zone field can easily be computed. Although this fact
was initially obtained for plane wave incidence, it was found, using essen-
tially different methods, to be valid equally for spherical wave incidence.
The derivation is included as Section D.7 of Appendix D. Using the formulas
therein, it was then possible to derive the fact that at a measurement range
of 100 ft. from the surface of the balloon, the measured cross-section should
be increased by 4.5 db to obtain the far-field radar cross section. This
derivation appears in Section D.3.

The decision to use the measuring range of 100 ft. was a compromise
involving several factors. For several reasons it was decided to use CW
transmissions: it was economical, simple to maintain, and spectrally pure.
Although there was no reason to anticipate dispersion problems, there was
good reason to preclude them. Because of the low power (.5 - 1 w) of the

14
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- 300" —

N / /

~ 120'

Figure 6 Scale Drawing of Hangar - Balloon-Track
Configuration
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CW system, it was desirable to bring the system as close to the balloon as
possible, to increase system sensitivity. Simultaneously, it was desirable
to remain in the far field of the antennas, which were standard gain horns.
After verifying, during the hangar background measurements described in D.2
that in the region indicated by the arc T.T, in Figure 6 the background
levels were 20-30 db below the nominal ballcon return, the 100 ft. distance
was chosen to meet these demands. Using this range made it relatively easy
to provide under-illumination of 12 db at the edge of the balloon, reducing
the power in such unwanted reflection paths indicated by the arrowed lines in
Figure 6.

Having selected the measurement configuration another question had to
be dealt with. For a typical bistatic transmission the boresight of the
antenna located at T,, for example, would be aligned along the path T_O.

For the receiving an%enna located at R, the main contribution to the Yeceived
field is caused by the illumination in the neighborhood of the point P indi-
cated on Figure 6, where the angles OT_.P and ORP are equal. For the range
chosen, the angle OT_ P is sufficiently large so that the effect of beam taper
must be taken into account. The data correction necessary to account for this
effect is described in D.3.

It was necessary to design a measurement sequence and arrange the instru-
mentation so that a maximum amount of data could be obtained during the time
available. This time was limited by the capability of maintaining a given
inflation level. The measurement sequence has already been referred to.
Figure 7 is a block diagram of the measurement system.

4.2 THE DATA

Although Balloon No. 13 was designated as the prime data balloon, data
was also obtained for Balloons No. 9 and No. 11. Typical raw data is given
in D.6. A single recording represents a_change in bistatic angle of 300,
which corresponds to a measurement of 15° of the balloon surface. Two pat-
terns at the same frequency, pressure, and polarization but marked TRANSMIT
LEFT gnd TRANSMIT RIGHT respectively, correspond, together, of a measurement
of 30" of the balloon surface.

Given a fixed angular interval, the basic parameters sought were the
mean cross-section and some measure of the scintillation about the mean cross-
section. From the point of view of the eventual utilization of the balloon
as a communications satellite, the ideal parameters would be the mean value
of |H|? and the standard deviation of this quantity about its mean. To com-
pute these values, however, would require a conversion of the data, which is,
in its raw form, on a decibel, or logarithmic, scale. Since, in this experi-
ment, the major concern was to relate the radar cross-section in a systematic
fashion to the variables of frequency, polarization, and inflation pressure
(or more precisely--inflation history) it was felt that no advantage was to
be obtained by making this conversion. It was also felt that if sufficiently
small angular intervals were chosen, the maximum variation, in decibels, of
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the cross-section over that interval would be an adequate measure of scintil-
lation properties.

For tgis reason it was decided to subdivide the 300 of measured surface
into six 5 intervals. The mean value of the cross-section of the raw data
on each interval was measured, using a planimeter. The near zone correction
of 4.5 db was then added, as well as the antenna beam taper correction, which
for intervals of this size, was regarded as being constant. The mean was
then recorded, in db relative to the nominal crosg-secticn of the balloon.
The maximum variation in cross-section for each 5  interval was recorded
directly from the raw data.

The results are tabulated in Tables D-1, D-2, and D-3, in Appendix D.
The most obvious and striking feature of these tables is the difference in
the scintillation level of the side of the balloon containing the reinforced
gores for Balloons 11 and 9 on the one hand, and Balloon No. 13, on the
other. This is shown by examining the + columns under "0", "5", and "10"
for the Nos. 11 and 13 balloon, and the * column under "15", "20", and "25"
for the No. 9 balloon.

At first glance there seems to be no significant difference in the scin-
tillation level between the measurements at horizontal and vertical polariza-
tion. Using Table D-3, for the prime data balloon No. 13, a distribution
histogram for the 42 entries was tabulated for the value of the function

10 log EX’ at both L-band and C-band. These histograms are given in Figure
8 and Figure 9.

The C-band distribution (Figure 8) has a mean -.5 db, and is skewed to
the negative side. This indicates or is at least consistent with, the hypoth-
sis that at C-band the scintillation level at vertical polarization is either
negligibly different or slightly less than the scintillation level at horizon-
tal polarization.

The L-band distribution (Figure 9) has a mean + .25 db, and exhibits
little or no skewness. This indicates, or is at least consistent with, the
hypothesis that at L-band there is no difference between the scintillation
levels at horizontal and at vertical polarizations.

These results indicate that whatever feature of the balloon is creating
geintillations about the mean cross-section, it is insensitive to polariza-
tion. When one looks casually at the balloon, one sees large numbers of
horizontal creases and ridges radiating from the seams. If these creases
have any effect on the cross section, it would be in terms of scintillation
effects, since their structure and placement is not regular. The very slight
sensitivity at C-band to polarization indicates that these creases have a
small, but negligibly small, effect on the cross section.

To describe the effect of inflation history on the gore, the Tables D-L
and D-5 were compiled. From these tables it is apparent that once the
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balloon has been inflated, the pressure history does not have significant
effect on the mean cross-section value. On the other hand, increasing the
pressure seems slightly to decrease the scintillation level, and except for
one discrepancy (Table D-5, C,, at final relaxation), after relaxation from
7400 psi, there is less scintillation than after relaxation from 4800 psi;
in turn, after relaxation from 4800 psi there is less scintillation than
during the initial relaxed condition.

Tividing the numbers in the "m - Summed over other gores" (Table D-k4)
by 5 is equivalent to finding the mean cross section of the balloon over all
the non-reinforced gores. Although the resultant numbers are, with few
exceptions between t 1, nevertheless Table D-3 indicates large variations in
the mean value from between one 50 strip to another. This indicated a need
to study the reflectivity patterns on a larger scale go determine effects that
would not be observed by breaking the analysis into 5 sections.,

For this purpose, four patterns were selected, all from the non-reinforced
side of the balloon. Their descriptions are these.

Pattern Pressure

Number Level Polarization Frequency
363 4800 (Relaxed) H L
367 4800 (Relaxed) H C
385 7400 (Relaxed) \Y L
389 7400 (Relaxed) \% C

For each pattern the corrected cross section value in db relative to the
nominal value wasorecorded at 10-minute intervals, giving a total of 180
points for the 30  scale. Calling the ordered sequence of points f(n),

n=1, 2, ... 180, the normalized correlation function
N-n
2 f:J'+r1 J
¢{n) = L= - , N = 180
1/2 1/2
{2 L)
j L 73
j= j=n

was computedé The resulting autocorrelation function was plotted for

10" < g < 15" 10", the autocorrelation of the truncated sequence being
regarded as meaningless for larger values of 8. The results are given

in Figure 10. It is clear that the principal parameter to which the auto-
correlation curve is sensitive is frequency. At C-band there is a well-
defined autocorrelatign peak at ~ 5~ and another at ~ 10°. This corres-
ponds to ~ 2.5 and 50 on the balloon. If one examines Figure A-11 and
Figure A-12, in Appendix A, which correspond, respectively, to C-band at
4000 and 7800 psi, one finds deep nulls, for the equatorial plane, approxi-
mately 1.7 apart at 7000 psi and just a peak at the center of the pattern,
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or equivalently nulls 3.40 apart at hOOOopsi. Returning to Figure 10, one
finds a peak for the 7800 R curve at 1.7 which does not occur for the
4800 R curve. Thus, the model balloon structure postulated in Appendix A
is capable of predicting certain autocorrelation peaks in the radar data,

and should be regarded as basically a correct model for the structure of
the balloon.
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5. THE PHOTOGRAMMETRIC MEASUREMENTS

Conductron was supplied, by NASA, photogrammetric measurements of the
Echc II ballcon taken during the Static Inflation Tests. These measurements
were made at several stations meridionally opposite to the side of the bal-
loon on which the radar measurements were being performed. One station
covered two unreinforced gores (gores 102 and 103), the other covered two
reinforced goyes (gores 106 and 1). The pressure levels were 2800, 4800,
and 7400 psi.” The measurements were first re-reduced to a form which
defined the surface to be a perturbed sphere as defined by Equation 14. In
Appendix F the results of this reduction are presented, a discussion of the
topography as a function of inflation pressure is given, and a method of
computation of the physical optics integral is presented. It was felt that
although this method would be satisfactory for rough estimates, to obtain
the desired accuracy, numerical computation of the physical optics integral
was required. The analysis which preceded the numerical computations, as
well as the results are given in Appendix ¢.2 The curves obtained are given
in Figures 11, 12, 13 and 14%. All the figures indicate a variation in radar
aspect of 20°. Figures 11 and 13 describe the unreinforced gores. Figures
12 and 14 describe the reinforced gores.

From Tables D-4 and ¢-2 we can make the following comparison between
the cross-sections computed via the photogrammetric measurements and the
cross-sections that were measured by the radar. Let (o) designate the mean
cross-section for the unreinforced section (relative to nominal sphere)

f =5.85 KMC
(o) (o) Difference
Photogrammetric Measured PSI in (o)
2.35 -1.25 280¢ 3.55
- 1.24 .2 480¢C - 1.4k
- 0.76 - .6 7400 - .16

lThé photogrammetric data at these levels was adequate to perform the
analysis. Data at other levels was supplied, but had too many blank
spots for adequate analysis.

2The numerical computation consisted, basically, of representing the
physical optics integral as a sum; the choice of grid size was 6 inches
(the number b defined on page G-4). This choice was to assure accuracy
of +.75 db in the radar cross-section. The computer program was formu-
lated to easure a round-off error of less than .25 db; the computed
results are therefore accurate to within 1 db. See Appendix G for a
more complete discussion of this point.
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The discrepancy between these values becomes less as the pressure is in-
creased. This indicates, as might be expected, that as the pressure increases,
the basic shape of the balloon (a smooth convex surface) becomes more repeat-
able as one moves around the balloon, so that the mean cross-sections measured
over different parts of the balloon (at the same latitude) become more inde-
pendent of longitude.

From Figure 12 the values of successive peak-peak scintillations was
computed and weighted according to the angular distance between successive
peaks; that is, the vertical distance (in db) between an adjacent maximum
and minimum was multiplied by the horizontal distance (in angle) between them;
these numbers were added and divided by the total angle, giving a weighted
average. These weighted averages were computed and designated (+). From
Table D-5 the corresponding (+) were computed by -dividing the sums for the
unreinforced gores by 5:

f =5.85 KMC
(£) (+)
Photogrammetric Measured PSI
5.2 5.4 2800
5.6 4.8 4800
.6 4.9 7400

It is seen that the scintillation obtained by the calculation of the field
from photogrammetric measurements on one side of the balloon does not signi-
ficantly differ from the scintillation obtained by the radar measurements on
the other side of the balloon.
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6. RELATIONSHIP TO PHASE "A" PROGRAM

iIn the first phase of the program 12 ft. circular segments of Echo II
material were mounted on a suppcrt structure, and the radar cross-section
measured at the Conductron Radar Range. The details of that phase have been
reported previously [Conductron Report 0038-A-F].

in the first phase program two basic problems were encountered.
Conductron's mechanical analysis showed that the balloon segment, when
mounted on the support structure, would assume the same configuration, for
a given pressure level, as it would in the full scale balloon, except for
an annular region extending inwards about 2 ft.” from the rim of the
"mounting ring”, to which the segment was attached (see Figure 15).

Mounting
Annular Ring
Region
Flange

Figure 15

This left at the high pressures, only an 8 ft. diameter sector whose mecharni-
cal behavior was the same as it would be on the full scale balloon.

lat the higher pressures. At lower pressures, the width of this annulus
decreases, according to the formula d =4 € R, where ¢ is circumferential
strain and R is the segment radius.
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The second problem was the electrical effect of the flange. The original
specification for the flange was that its cross-section be at least 20 db
below the nominal return from the balloon. The flange was designed (see
Figure 16) to have an elliptical shape and it was predicted to have the
desired cross-section.

-+ 12—

< 2

Figure 16 Cross Section of a Flange

15"

During the measurement program, contour measurements were made on the
segment, producing topographical maps similar to those found in Appendix F.
However, the grid size on these maps precluded an exact calculation of the
physical optics integral; at this stage of the investigation, it was net
feasible to instrument precise contour measurements. The maps were therefore
used to compute radii of curvature, and the predicted cross-section, on the
basis of specular scattering theory, was found to be essentially constant.

However, the cross-section data at C-band had a 5-6 db scintillation
level, and on this basis it was assumed that the mounting flange was inter-
fering with the measurement, and that the radar cross-section of the flange
was between 14 and 18 db below the nominal level of the balloon, rather
than the 20 db value for which it had been designed. It is now clear that
the 5-6 db scintillation level, which was independent of inflation history,
is exactly what would have been predicted on the basis of the second phase
program, and that more accurate contour measurements would have revealed
this during the first phase program. This also indicates that the flange
design had actually met its specifications.

At the conclusion of the first phase of the program, it was felt that
the segment measurement techniques could reliably predict the mean cross-
section of the balloon as a function of the balloon inflation history.
Upon re-examining the first phase measurement program it is seen that both
cross-section and scintillation levels are the same as have been consis-
tently found in the Static Inflation Tests.

In the evolution of this program, it has become apparent that in addi-
tion to mean radar cross-section and scintillation level, a significant
quantity which can be related to the inflation history and to the frequency
is the autocorrelation function. On the basis of the work reported in
Appendix A, it is seen that for this particular description of balloon be-
havior, measurements which include at least a three gore sector must be
performed. Because in the first phase, the effectively 8 ft. diameter seg-
ment (at high pressures) was less, in width, than the three gores advisable
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the first phase work must be regarded as inadequate only to predict the auto-
correlation data for the full scale balloon. In continuation of this work,
it is planned to use a larger balloon segment.
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7. SUMMARY AND CONCLUSTIONS

The model we have developed for the Echo II balloon is a smooth convex
body upon which is superimposed a small surface perturbation. This smooth
convex body can itself be regarded as a small perturbation from a sphere
(see Figure 17).

Sphere’ Smooth Convex Body - Echo II
(Appendix A) (Appendix F)
Figure 17

This final configuration, of course, can be regarded as a perturba-
tion on the original sphere, but it is important to have at hand the smooth
convex body model and the small perturbation model, dependent upon what
effects are critical.

The systematic changes in the radar cross-section as the illuminating
beam moves around the balloon is predicted from the smooth convex body. If
the gores are identical, the field contributions from three gores are ade-
quate to determine the radar cross-section. This model can be used to pre-
dict the autocorrelation peaks of cross-section as a function of viewing
angle.

The methods of physical optics are adequate to describe the perturba-
tion model. In particular, the scintillation levels are in close agreement
with experiment.

Although the model developed in Appendix A is predictive of the auto-
correlatien peaks, the mean cross-sections and peak-peak scintillations for
that model differ significantly from the values obtained in the Phase A
segment measurements and the static inflation tests. This means that al-
though the basic geometry is correct, the numerical values of the parameters
determined by the mechanical analyses provided Conductron by NASA are in-
correct. The fact that the model was predictive of the autocorrelation peaks
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means that the latitudinal radius of curvature estimate was correct. Because
the mean cross-sections computed from the model are uniformly higher than
those observed on Echo II, the longitudinal radius of curvature for the model
is too large. The balloon "flattening” effect derived in Appendix C would
cause a reduction in this radius of curvature in the equatorial region, and

thereby account for the discrepancy between computed and measured values of
the cross section.

It is planned, in the near future, to conduct some more segment measure-
ments at the Conductron Radar Range and another Static Inflation Test. The
segments will be sufficiently large so that the resultant scattered field of
at least three gores will be obtained. The data will then be used to predict
the results of the static inflation test, on the basis of the work performed
in the present phase. This will serve both as a verification of the theories
and techniques developed, so far, in this program and a demonstration of an
effective tool to predict satellite radar performance.
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APPENDIX A

A.1 INTRODUCTION

This report consists of the theoretical calculation of the scattering
properties of a hypothesized perfectly conducting geometric configuration.
The configuration consists of 106 gores and two end panels, arranged, in
the fashion of the Echo II balloons, to form a nominal sphere of radius
a = 20.6 meters. The exact shape of these gores was to be determined by
using data given in two reports:

"Structural Analysis of Echo II to Predict the Surface Configura-
tions," Fairchild Stratos Corporation, Final Report, Contract
NAS-5-2365, January 1963, and

"Structural Analysis of Echo II," Astro Research Corporation,
Interim Report No. 1, NAS 5-3229, May 1963.

The emerging hypothecated geometry is the following: If one stays
away from the polar caps, which are not studied in these reports, each gore
can be represented by two coordinates (S,, 82), S, representing distance
along the gore in the longitudinal direc%ion, S, representing distance along
the gore in a direction orthogonal to the longi%udinal direction. (see
Figure A-1)

Figure A-1

The curves S_ = constant are plane curves, the planes being mutually ortho-
gonal, and tﬁe normal to the surface at the intersection of two such curves
is orthogonal to the plane of their tangent vectors.

For fixed S,, the form of the resulting curve was obtained from the

data in the above mentioned reports, and depended, of course, on the assumed
surface stress. The surface stresses chosen were 500, 4000, 7000, and

A-1
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12,000 psi. These stresses correspond, respectively, to surface forces of
.18, 1.4k, 2.52, and 4.32 1b/in. The Astro Data, taken at forces of 1.72,
2.66, 4.05 1b/in was extrapolated graphically to obtain the data correspond-
ing to the forces we had chosen.

It was found that the corresponding curves could be fit with a parabola,
of very nearly constant curvature; the corresponding mathematical reprgsenta—
tion was chosen to be a circular arc of radius A, where the ratio y = = had
the values 22, 3, 1.7, 1, corresponding to the given pressures. a

In Section A.2 below, we derive the formulas to be used to find the
scattering cross section of this idealized structure, and in Section A.3 we
find numerically the cross-section for values of 7y, » =, ¥ =3, 7y = 1.7.
We do not bother with y = 1, for this is the perfect sphere. It shall be
seen that the solution is in the form of a Fresnel integral, and it is ele-
mentary to see, from the asymptotic form of the integral, that 7y = is a
valid approximation for y = 22. The scattering considered is bistatic, the
transmitter being in the direction of the unit vector {i,,, the receiver in

; . X ~ T
the direction of the unit vector Up-

It is a temptation to use, a priori, the bistatic theorem, which re-
places the problem of bistatic scattering with the problem of monostatic
scattering, in the direction

a =.___£___ (a )
o 2¢cos p v T R7’

where the bistatic angle, 2B, is defined by

+ 0

cos 2 B = Up - uR.

This theorem is an exact theorem, but it does not apply to bodies with dis-
continuous tangent planes or edges;zﬁurt%er, it is a limit theorem, being
a statement of what happens as k = 5= = =~ .

Since we shall deal here with two frequencies f = 1.71 KMC and f =
5.85 KMC, the second condition does not apply; the trouble is that the
Fresnel integrals involved, except in the case of y = o, are not close
enough to their limiting forms. The first condition is intrinsically more
serious, however. For bistatic (B # 0) scattering, there is a cross-polari-
zation term, which is not present in monostatic scattering.

Fortunately, the errors introduced by replacing the bistatic by the
monostatic problem are proportional to sin f and to sin ¥_, where ¥ 1is a
parameter, to be described later which is small. The errors turn otit to
be negligible, in terms gf the criterion that if the field quantities are
represented in the form H(1 + &), then ]6| must be less than .08. This
criterion guarantees accuracy in the cross-section of + 1 db. 1In the
following section, approximations will be made to simplify the relevant
calculations. These approximations have to do with discarding terms which
are proportional to either product sin v, sin B or @ = 108 the resulting
errors total less than the required .08. ©
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In Section A.3 we evaluate the relevant integral, and obtain graphs cf
the cross section as one moves across a gore. These results are valid for
any bi%taﬁic ang%e, 2 B, <307, and have been computed for azimuth angles for

-
A.2 SCATTERING BY A GORE

Let the gore have the equation,
T =T (8, 8,),

where S_., j = 1, 2 are the arc lengths of the orthogonal coordinate curves.
The fuld variation of S, is the longitudinal perimeter of the gore, which
is approximately = a; for each S., S, varies over the interval - é, 2

in which S, of course, depends onl S,7 The coordinate curves are p%ane
curves, having the unit tangent vectors,

)

N

Tj (Sl’ 82) = rS. (Sl’ 82); j=1,2
J

and have curvatures K., which will be assumed to be constant and having the

values %, % , where AJE a. The Frenet-Seret formulas are
3T, 3 f 8
sL=-k 8, 3§, ~FKTp Iz
S J J
J
and
n= T2 X Tl'

To compute the scattered field, it is assumed that the currents induced
by the incident field are given by the physical optics approximation, valid
for large a,

f .
_‘l) X fi,

axl]

-2

where H*1> is the incident magnetic field. The transmitter will be assumed
to be located in the direction of the unit vector @ , and the receiver in

the direction of the unit vector ﬁR. The bistatic angle 2 B, is defined by

cos 2 B = Up * U,

and the unit vector ﬁo is defined by

~ 1

= ——— (0. +
Yo = 2 Cos B (uR “

T)'

The polarization of the incident field i? %iven by the unit vector p,
where p « i, = 0. Then the scattered field H\SJ) is given by the physical
optics formila. The normalized scattered field, ﬁ, defined by

-

. /
B=nboxr e R ﬁks)

)
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is then, for large R, described by

ﬁ _ _il_( ff e—2ikCoSBu0'I‘ (
Jr

the integral being extended over the illuminated portion of the gore.

=>

X P) X ﬁR ds,

Because there is always a value of S, for which G_ - ;S = 0, the above
integral can be evaluated by regarding it as an iterat@d intégral, and inte-
grating first with respect to Sl by the method of stationary phase (justified
because ka is >> 1), we obtain

—EikcosBﬁd'r(ﬁi,Sz)

S
ﬁ~ie“i/“/—lﬁ3— f2 ds [e [ﬁ(s*s)xﬁ]xﬁ]
P A
cosB o 2 '\/ﬁ B ﬁ (S*, 3 ) 1772 R
_ S o) 1 2
E

S* is the point for which ﬁo . ;S (Sf, S.) = 0, and is independent of S_.
Hénce we can regard S* as a constint in the evaluation of the integral. "The
geometry of the curve

—

Z o T3
r=rv (Sl’ 82)

is demonstrated in Figure A-2.

fi(o)

il
ol om

Figure A-2 Figure A-3
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The vector i lies in the plane of the curve (because i u . T 0),
which is an arc of a circle with radius A. In Figure A-3, tHe re%atlonshlp
of this tlrclg to the radius of the nominal sphere, a, and the angle & is
shown. @ = -——== sin 6 , where 6 is the aximuth angle of u . 6 =

corresponds %o GO lylgg in the gquatorlal plane.] NUmerlcally, ° 2
2 = A sin™t [2a]l ~aa
2 A
Now, using the Frenet-Seret formulas, we obtain
~
7(s.) = 2(0) + T.(0) 8, - & #(0) 8° + . .
r\.g) r(0) Tl(O, 8, - 51 7(0) 5+ .
T,(0)
i o \ o N~ . l-\ + . s
n<32/ n(u) + X 52 t
From F'igure A-2 it is clear that ﬁo - f{0) =cos ¥, G4 ?1(0) = sin ¥ ,
and from Figure A-3, °° 0 ’ ©
F(0) = fa cos a+ A {1 - cos % a)] fi(0) ~ a f (o).
Therefcre, the integral can be approximated
S
-21 o o] 5
- wi/h T . leacouBcost 2 .
H~1e — 2 d 5
2088 . é
cesy 2
Do o Q2 — I ('J ~
olgkLCSpl R “5 Qoll’lwon 2_] Tl(';’>
= N + . s
- [ln(O) I 82] X P } X iy
2 _.
< + !
A/ 08 WO n Sir WO
{'i
ﬁ (0]
T

=2

Figure A-L
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Figure A-L illustrates the configuration of Q o’ 4 T and There are
two independent orientations for the polarization z Stor p. Tﬁe first is
perpendicular to the plane of the three vectors, p‘ '/, corre8pond1ng to hori-
zontal electric polarization. For an arbitrary vector v,

o x 511 x g y 5t

R™ VR TV
which leaves the polarization unchanged. 1In particular, if ¢ = f1(0), be-

cause uT lies on a cone of half-angle B about uo,
cos B cos Y - sin B sin y_ < (ﬁR . no) < cos B cos ¥ sin B sin erO
Ifo<p< 150 and 0 < WO < 7—1/20, we may take
(uR . no) ~ cos B cos wo,

so that the vector cross product term in the integrand can be replaced by
S

cos B cos WO ﬁl + 0 (75)-

The other orientation, corresponding to vertical electric polarization
is

=100 - W)y x 8) - (0 - o) x a3

The second vector corres ponds to vertical electric polarization, whereas
the first corresponds to @i X i, =sin2 B p ), a cross polarlzatlon term.
if ¥ = 8(0), as above (¥ .71, ) cos Y, cos B, and, since P, is orthogonal
to ﬁ arnd 7(0) makes an angle ¥ with 4 , (¢ - ﬁ? < |sin v, [

With this approximation, the cross-product term in the integrand is
S

+ cos B cos wg (ﬁ X A(l)) + 0 (—g)-

Now neglecting terms O(—r ) in the slowing varying part of the integrand
fi/L

and suppressing the polarlzatlon vector, and suppressing the factor i e

we obtain

S
. —2ikacosBcosy 2
H~ e ° Jiacosscosw J[
° S
cos¥, , )
ikcosB[ ——— 8= - 2siny S_.]
A 2 o2
e dSE'
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For the values 0 < B < 15 » 0 < ]W | <T. 5 , a final approximation, sup-
pressing the constant phage term:
S

—-2\1;31
Hw\/—f ° 2" 3s

X
S 5
Now, letting 3= ada, £ = - and defining
A
7 =3 (7 > l);
we obtain
1kaf—_ 2¢ t£]
ka de.

A.3 NUMERICAL DETERMINATION OF THE CROSS-SECTION

We have seen that the normalized field, ﬁ, scattered by a single gore
is given by o
: ]
. a ikaf[= - 2y &
i
H ka Jf o y o de,

s
2
na - Q

where a is the nominal balloon radlus, Yy = A, and @ = 2 sin @ , where 6
is the azimuth angle of the vector i , and is the afigle betwéen @ u and
the normal to the center of the goreO To ob%aln the field scatterlng by
the balloon, as uo "moves across" a gore, i.e., - a < Wo < @, this expres-
sion must be evaluated, not only for this range of values for ¥ , but also
for the ranges, -3 a <y < -0, &< W <3, etc., representgng the
returns from adjacent gorgs, the result$ T{in general, complex) must be
added, and the square of the absolute value of the sum must be computed to
obtain the balloon cross-section relative to the cross-section of the nomi-
nal sphere.

A.3.1 "Flat" Gores

The first case to be considered is the one in which the gores are
"flat", or, equivalently, 7 = . Here, the above expression can be inte-
grated in an elementary fashion, obtaining:

sin (2ka @ ¥ )
H 5 / ka o < 0 >
5 b1 2 ka « Wo
qfﬂa

which is the well-known return from a circular cylinder.

A-T
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The computations are elementary. We EaV% perf0£med them at frequencies
1.71 KMC, 5.85 KMC, and for values of 8 , =, 7, and z. The results of these
computations are illustrated in FiguresoA—g, E—6, A;g, and A-8. The infinite
null observed in the equatorial plane at 5.85 KMC (Figure A-8) is caused by
the null in the field pattern within the interval - @ < ¥ < @. The critical
frequency, below which this does not happen is determined by the equation

2 ka a2 = 0,

which for the present case gives fc = 3,9 KMC.

A.3.2 Finite Values of ¥

Although the preceding case, y =, is an extreme limit, we shall see
that the answers obtained are not remarkably different than for relatively
small values of y. For finite values of y, by completing the square of the
quadratic term in the exponential, and meking the substituticn

ka ,
z = 37 (& -7 WO):
the integral can be written as
- ka .
. § _ika,/v,ui > (@ -7 v) L2
— ~ ’ L e - u[ d dz.
2 " ka +
na -5 (a WO)
Let
X = Nka 7 \|/O
v =X g,
4
Then

oL [ - [T AECE

na X+V

in which the integral is a Fresnel integral. For the frequencies under
consideration and for the given value of a, the possible range of values of
Vis 0 <V <15, and the possible range of values of X is 0 < X <. Using
the well-known asymptotic representation: -7

. 2

i X 122 i elx
- e dz ~ 1 - —/—,
4]25[ V2 7 x

it is easy to verify that if V is in the stated range, the integral becomes
negligible in comparison to its value at X = O, when X > 5. Because, given
k, a, 7 and X, ¥ _ is determined, this allows one to estimate how many gores
are necessary to take into account to determine the total field. As either

A-8
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7 or k the frequency increases, the maximum number of necessary gores de-
creases. Table A-1 has been computed, using standard tables of Fresnel
integrals, correct to the second significant figures, and, with interpola-
tion, can be used to evaluate the fields in question both for the present
values of the parameters and for others.

TABLE A-1
. 2 X+v ., 2
-1X I 12z
e F f e dz
2
X-V
v * M 6 8
X .2 . . . 1 1.2 1.4
0 .32 .64 Oht 121 1.22+.231 1. Mb+.U8i 1.56+.78i 1.5 +.50i
.2 .32
L .61-.021
.6 L72+.101
.8 Ch3+.1hd
1 .30 S57+.0hi LT74+.081 L79+.071 . Th+.071
1.2 L. 61
1.4 Chho 861
2 L2T+.061 .21+.161 A1-.12i .11-.12i -.L8i .16-.18i -.18-.351
3 .22-.08i  .19+.05i -.17 ~.36+.04i  -,15+.18i -.2 0
L .19 .12 .10 0 .201 0 0
5 -.01+.18i 0 0 1L 0 0 0

Using this table, the following values of the field have been computed, for
values of \[ro/a indicated.

T _ o
6;o =2 6o an 6o -6
¥ ¥ v
=2 H/. J’(a2 2 H/,J a- 2 H/»Jﬂa2
a / a 1o
0 1+.11 0 .7 0 5
57 Bl i 57 .7 57 5
.94 B+l i 1.35 T 1.94 .5
1.9 A+.1 4 2.7 Lo+.2 1 3.8 L2411
2.8 -.2 i .2 5.8 .2
3.8 D2 5.35 .1 7.7 .2
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f=1.7,7=3
0 LT i 0 .7 0 g
.33 .8 .33 .7 .33 o
.71 .8 1 .6 1.4k A
1.42 A+.1 04 2 3+l i 2.4 il
2.12 0 3 .3 4,25 3
2.85 .3 b .1 5.8 o3
f = 5'85) y = 1.7
0 1.6+.6 i 0 1.3+.2 i 0 LOF.1 1
.57 Ht+.2 i .57 O+.1 i .57 RrC
.6 -3 1 .72 B+.1 1 1 R
1.03 -2+, 1 1.45 d-.1 14 2 Jd+.1 1
1.55 1i 2.2 -k 3 -2
2.06 0 2.3 0 i -2
3.2 .1 5 o
f = 5'85) y =3
0 1.8+.4 1 0 1.2+.1 i 0 1
.33 1.2+.3 i .33 1 +.1 1 .33 .8
.39 1.1+.1 i .55 1 +.1 1 .78 .8
.78 -3 1 1.1 -.3 1.55 .l i
1.17 -.h 1.63 3 2.42 .9
1.56 0 2.k 3.1 .1
1.95 .1

Because the fields are complex, to use these tables it is necessary to
consider the real and imaginary parts of the fields separately, but except
for this, the computation is routine. The results of combining all signifi-
cant contributions are given in Figures A-9, A-10, A-11, and A-12. Compari-
son with the results obtained for y = o, indicates some changes, but qualita-
tively, the results are similar. To see how the field pattern differs from
its limiting form, a comparison between the scattering from a single gore at
1.71 KMC, Figure A-5 above, can be made with the scattering at finite 7,
Figures A-13, A-1k,

A-1k
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APPENDIX B

txi

.1 INFORMATION RECARDING MATERIAL BEHAVIOR

It is obviously necessary to gain a full understanding of the material
behavior of the sandwich-type skin. Within the limited amount of the time
available, it is felt that the Fairchild Stratos Corporation (FSC) has done
an acceptable job. Nevertheless, the data which are presently available
are nut only not fully reliable, as pointed out by FSC itself, but they are
also highly incomplete.

It appears that the balloon is to be inflated in such a way that
plastic (i.e., permanent) deformations in the balloon take place. Conse-
quently, as the pressure is being released, it is necessary to understand
the mechanical behavior of the skin during the unloading process. Such
test data are apparently not available at the present time, although it
may be surmised that the material will unload elastically. Moreover, in
view of the proposed penetration of the plastic domain, it is necessary
to gain a better insight into the stress-strain law of the skin for dif-
ferent types of loading histories. Also, because some bending does take
place, experimental information should be obtained regarding the response
of the skin to bending moments. It is agreed, however, that shearing
stresses are probably not an isssue.

The report of FSC assumes that, in view of the vastly larger magni-
tude of the modulus of elasticity of aluminum as compared with that of
mylar, all the stresses are taken by the aluminum itself. This certainly
requires experimental verification. Furthermore, it is necessary to gain
information relative to the behavior of the skin after one or more of the
aluminum facings have failed. None of the experimental data described
above require a prohibitive apparatus; it should therefore be possible
to counduct such a program locally without undue additional effort. Further
experimental studies may become necessary as the need arises. For example,
in order to minimize the irregularities at the seams, it may be desirable
to reduce the bending stiffness of the splices (rather than to increase
it as the present design seems to require). This could be achieved, for
example, by omitting the inside aluminum facing and, in order to counter-
act this omission, by doubling the outside facing. Other methods are
certainly feasible. In any event, the usefulness of such a step should
be supported by experimental evidence.

In addition, because the inflating process introduces non-elastic
strains and hence an unloading history different from the loading his-
tory, there may result nct only residual strains, but also residual stresses.
The average stress in the balloon, after the removal of the internal
pressure, will obviously vanish. Nevertheless, local residual stresses
may remain, especially near points of imperfection or discontinuities.
It may therefore be necessary to test the material against the possibility

B-1
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of stress relaxation--a phenomenon which, in time, may bring about a slight
nodification of the local irregularities, if not of the overall shape of
the balloon.

B.2 ANALYSIS

NG claim is made that a meaningful analysis is necessarily simple.
Nevertheless, with realistic simplificaticn, it appears likely that
such an analysis can be undertaken within a reascnable effort, Basi-
cally, the balloon should be anslyzed as a sequerce of cylindrical
shells (in the shape of the gores) spliced together at the seams. Such
an analysis, in its pure form, is extremely complicated, especially if
plastic deformations are to be included.

Forturately, the thickness of the skin is so minimal that it 1s
poasible tu ignore the bending stiffriess of the shell. This leads to a
“membrane’ theory of substantially reduced complexity. The relevart
equations of this theory are given in Equations R.1 to B.9 in Section b.3.
It is roted that Equations B.7 to E.9 contain ron-linear terms in the strain-
displacement relations. Such terms are absolutely eassertial (and may in
fact become dominant) if the radial displacement w is of the same order
as, or larger than, the thickness t of the balloon, It is noted that
these non-linear terms have not been included in the analysis prepared
by Y30,

The bourdary conditions governing a representative gore are given by
Equations B.1C to B.lk. Of these, Equaticns 2,10 to E.12 represent symmetry
conditions at the center of the gore. Equation B.13, at the edge, is alsc
due to symmetry, and Equation E.l4 represents the fact that the displacement
of the seam must be radial. Since, on the other hand, the system of Equations
B.1 to B.9 can be reduced tc a sixth order system involving a stress function
and the displacement w, it is necessary t:- establish three boundary conditions
for each boundary. Equations B.13 ard E.lh are thevefore inadequate. An
additional equation is obtained from the conditious of equilibrium; i.e., the
resultant force in the radial direction must vanish in the seams In the
absence of any bending stiffress at all, this implies that the balloon
must be smooth (see Equation E.22 for the simplified case).

This condition is apparently what the F3C report postulates. Actu-
ally while the thickness t of the skin, .aud hence the hending stiffness
t7, is exceedingly small, it does not vanish altogether. It may there-
fore be necessary, in the immediate vicinity of the splice, to take into
consideration the full system of equations, ircluding the effect of the
bending stiffness. The order of the system of equations has rnow been
raised to eight; the four boundary conditicrs then require that, in
addition to Equations B.13 and B.l4, the slope of the deflected surface
vanish at the splice and that the splice be it egquilibrium against radial
motion. This condition, again for the simplified prcblem irvestigated in
Secticr B.3, is given in the second and third of Efuations BelOe
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The effect of the finite bending stiffness is likely to be purely
local. In other words, by employing standard boundary layer technigues,
it is likely that a realistic solution to the problem can be given by a
membrane analysis for the "interior™ domain of the balloon and a boundary
layer type analysis along the splices. None of these facts have been
taken into consideration in the FSC report. Moreover, some of the aver-
aging processes employed are not entirely clear. In fact, some of the
connectinns between the final graphs and the intermediate equations
apparently involve an amount of algebra which, at least at first glance
is not altogether transparent. In any event, the analysis performed by
FSC, while impressive in the light of the time restrictions, appears of
limited relevance.

In Section B.3, a sample computation is attempted for a vastly
simpier problem. In effect, the actual balloon has been replaced by a
cylindrical shell of polygonal cross section similar to the actual cross
section of the balloon at the equator. Such a computation can be carried
out explicitly; the development of a boundary layer can also be shown in
explicit form. It is not to be inferred that these results given have any
quantative application to the problem of the almost spherical shell. How-
ever, it is felt that, as a demonstration of a simplified approach, some
of the features of the expected computational method can be brought out in
this manner,

B.3 The equations of equilibrium of a typical gore is given by the
following equations:

N + N = 0 B.1l
XXX XYsY ( )
N + N = 0 B.2
XVaX AAZN ( )
N

‘N = (8.3)
A w + 2N \Y + & w - = - °
NXX pXX Xy HXy AAZE A7 R P 3

In these equations, the first two constitute the condition of equilibrium in
the tangert plane and the third the one perpendicular to it. The membrane
forces are Nji, and the deflection perpendicular to the tangent plane is w.

A comma, folldowed by a letter, constitutes partisl differentiation with re-
spect to the corresponding coordinate. Equations B.l and B.3 are taken
relative to the final configuration, although certain standard approximations
inherent in shell theory have been hade.

The equations relating the membrane forces to the membrane strains ¢

are as follows: 1

B-3
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N, = Kie, + ¥ eyy) (B.k)
= K'(c v - _Et B.

Nyy K (cyy + v exx) (X T (B.5)

ny = K' (1L -v) Cxy (B.6)

Finally, the strain-displacement relations are given by

1l 2
xx T Yx F 2V (B.7)

e = + v + W oW B.8
yy 2y X »X :y) ( )

in which u and v are, respectively, the displacements in the x and y
directions. It is noted, as already pointed out in the body of this
report, that non-linear terms in the lateral deflection w are retained.

The system of Equations B.l to B.9 involves nine unknown variables:
The three independent membrane forces N;.; the three displacement components
1, v, and w; and the three independent mémbrane strain components €550
Equations Be.l and B.2 imply the existence of a stress function. Equgtions
BeT7 to Be9 imply a compatibility relation among the strains after the
eiimination of u and ve When this is substituted in Equations B.3 to B.6,
there result two equations in the stress function and the deflection w

(associated with the name of Foeppl) which are of the sixth order.

The "boundary conditions" at the center of the gore are given by
the symmetxry conditions 10, 11, and 12 as follows:

ny(O,y) = 0 (B.10)
L. (0,y) = © (B.11)
u (0,y) = 0 (B.12)

At the seam, the following two conditions

ny (4,y) = O (B.13)

u (L,y) = wtana (B.1k)

B-k
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imply that, by symmetry, the shearing stress vanishes and the displacement
is radial. A third condition can be obtained as is discussed in the body
of the report; £ represents half the width of the gore.

In what follows the problem is investigated for the case in which ¢
is a constant (i.e., for a cylindrical vessel)., In that case, all references
to the y cocrdinate may be dropped. It follows, therefore, from Equation
B.l that

N = constant (B.15)
in which N is employed for Nxx' In Equation B.3, simplification leads to
N“]“I = "'p (B.l6)

in which W is employed for the lateral deflecticn associated with the mem-
brane theory and a prime represents differentiation with respect to the
argurent xo In view of Equation B.ll and R.15, Equation B.16 may be integrated
to yield

Wo= A - B (3.17)
in which A is a constant of integratiorn.,

With the equivalent of Equations B.4 and B.7, the membrane force N
is expressed in the form

N = Et (u'+ % w*2). (B.18)
In view of the boundary condition 12 and Equations B.15 and B.17, the dis-
placement u is obtained as follows:

2,3
. - Nx 1 px .
u = E‘_t g‘ N2 (B.lg)

It is noted that the second term on the right side of Equation B.19 is the
result of the non-linear expression in Equation B.18. If it were omitted,
the result wuld be in serious error, as can be seen below.

Because of the large number of gores, the width of the gore may be
approximated by

I = Rax | (B.20)

where o represents half the central angle of the gore. - When Equations B.l7
and B.19 are substituted in the boundary condition B.ll4, this leads to the
following relationship (with tan & replaced by ):
A 3.3
22 , R _ 1 EgRea

A = é% R o . (B.21)
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Finally, to have equilibrium in the radial direction, it is recessary (within
the coafines of membrare theory) that the shell be smooth at the joints;
this implies that

wi(ey = -ao (B.22)
When this is substituted in Eguaticn B.17, the expected result

N = pkR (B.23)
is obtained. All constants have now been determined as functions of the

interral pressure pe In particular, the deflecticns at the center of the
gore and at the seam are given, respectiveiy, by

2 2
Rot pR”

W) = =5+ g o
22 2 (B.24)

- R R
W) = 7 Et

In these expressions, the first terms on the right side represent the
"bulging™ necessary to convert the polygon ivte a circle, and the second
the exgansion due to the internal pressure®,
The exact equations, which take accsunt of the bending stiffreszs of
+the shell, should be
pe3 .
- W't 4+ Ne" o= - Be25
5 P (5.25)

instead of Equation B.l6. The boundary conditi:ns read as follows:

wi (0) = 0
wh (2) = O (B.26)

B

Noo - 15~

witt (8 = ¢
cf which the first and third represent additional conditions and the secor
replaces Equaticn Be.22, Tuo solve this more accurate system, it is conveniert
t5 replace the independent variable x by z thriugh

X = f - z. (2.27)
Ir. other words, z is measured from the edge ints the interior. Alsc,

let

W o= WAy (5.28)

* Tguation B.2k, could, of course, have beern obtaired by far more elemertary

procedures, The reasorn in carrying out the present process is to demonstrate

relatioas.
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in which W is the result of the previous approximate computation. It follows
then that v is governed by
Et3

s v~ N = 0 (B.29)

in which the prime now represents a derivative with respect to z.

An approximate solution to Equation B.29, subject to the prev1ously stated
boundary conditions and the superposition 28, is given by,

vV = %e-ﬁz (B.30)
in which the parameter B is given by
2 12N _ 1l2e t
2 o LA ol (ot (8.31)
Et3 t2 Et

Equation B.30 is only approximate in the sense that it does not satisfy the con-
ditions at the center of the gore exactly. However, the expression ROB passes
all bounds for vanishing thickness t. In other words, Equation B.30 repre-
sents an asymptotic solution to the system considered here. It is seen that

for increasing internal pressure the local irregularities decrease both in
magnitude and extent. The analysis given above is based on elastic behavior.

In the presence of plastic yielding it is expected that the surface becomes

even smoother than indicated here,

The analysis given above demonstrates explicitly the development of a
boundary layer. It is expected that similar behavior will prevail in the
case of the actual shell. In effect, a singular perturbation has been per-
rmed on the simplified solution. This local behavior is entirely indep-
endgnt of the width of the gore as well as of the external boundaries (if
any)e.

¢

£
|
— <
'
Figure B-1
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APPENDIX C

C.1  INTRODUCTION

In the present investigation we are concerned with the reliability of the
structural analysis of Echo II contained in a report by the ASTRO Research
Corporation (ARG). This report deals with the deviation from perfect
spherical shape of an Echo Il balloon which is constructed by means of a large
number of gores made out of a sandwich-type material (X15). The ARC report is
entirely predictive, and it is the purpose of the present study to arrive at
an evaluation of these predictions.

The ARC report may reasonably be divided into three sections:

1. the predicted shape of the balloon under interral pressure and
under the assumption of perfectly elastic behavior;

2. the effect of the pressure relaxation, especially in view of
the assumed irreversible material behavior; and

3. an experimental study to establish the material constants used
in the first two sections of the report.

In the second section referred to above, the material is assumed to unload
elastically. Since, according to the ARC report, the unloading characteristic
of the balloon is primarily based on the results of the first section, it
becomes clear that the reliability of the first section is essential for all
subsequent analyses. It is for this reason that the present study concerns
itself primarily with the first section.

C.2  ANALYSIS OF INFLATED SHAPE

The authors of the ARC report have recognized the fact that the problem
of computing the predicted inflated shape is essentially a non-linear one.
In its original (that is, uninflated) state, the balloon is composed of a
large number of gores, which are cut in such a manner as to form portions of
circular cylinders after assembly. In other words, a parallel of latitude
appears as a polygon rather than as a circular, while the center lines of the
gores appear as circles of radius ro-

In its inflated state the balloon should be spherical, or nearly so. The
authors of the ARC report have attempted to predict the exact shape by first
assuming it to be a perfect sphere and by then applying corrective terms to this
sphere on the basis of the violation of one of the equations of equilibrium.
Apparently assuming this correction to be comparatively small they have
lirearized this process; if carried out properly, this appears to be a legitimate
procedure. However, we will show that, in our opinion, the results of the ARC
report are of questionable validity.
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The ARC report is rather concise, making it necessary at times to guess
as to what the authors had in mind. We have attempted to reconstruct their
appareat thinkirg and computations. In particular, if we assume that the
balloon is inflated into a perfect sphere of radius r, then the strains in the
meridional and azimuthal directions are given in Eqs. (1) and (2) of the report.
We have confirmed Eq. (1) but have been unable to confirm Eq. (2). Instead,
according to our calculations, the latter should read

¢, = — (1- ¢? cos® 8) -1 (21)
P r
)

if only terms up to the second power in ¢ are included. The discrepancy does
not appear serious, however, since the authors' Eq. (2) represents the average
of our Eq. (2') over the width of one gore. It is conceivable (although the
report makes no mention of it) that this was done by the authors to satisfy
one of the equations of equilibrium in the plane tangent of the sphere. The
authors' as well as our own computations are based on the assumption that each
point on the balloon moves radially outward.

This assumption, of course, is artificial and can only be maintained if
it leads to a system of stresses which are in equilibrium. The authors note
that this is, in fact, not true and that there exists an imbalance between the
uriform outward pressure and the resisting radial resultant pressure associated
with the meridiomal and azimuthal membrane forces. They also note a further
imbalarce associated with the presumed reinforcement at the seams; however, we
will ro* pursue this in detail in the present study since it is our belief that
even if the balloon were truly homogeneous the authors' conclusions would be
open to doubt.

If the membrare forces N, and Ny are computed on the basis of Eq. (1)
and {2}, and if the shearing ~strains and hence shearing stresses are correctly
assumed to vanish, then the equations of equilibrium are violated both in the
radial aud in the weridioral direction. The authors attempt to make allowance
for the former but not for the latter. It is for this reason that the basic
assumpzion of the authors (namely purely radial movement) is actually untenable.
Ir Section C.5 it is shown that meridional as well as azimuthal movement takes
place znd that the final shape of the inflated balloon is not spherical, but
slightly spheroidal. The authors' analysis, in the absence of the effect of
izhomogereity at the seams, does not account for this.

So far as the radial imbalance is concerned, the authors assume that this
can be handled by additional radial displacements which are governed by Egs.
(3) and (4), of which the former is neglected. When this additional radial
movement is expanded in a Fourier series along a parallel of latitude, and
when the load imbalance is similarly expanded, then, by equating the first terms
in the expansions, the authors arrive at Eq. (5). We have been able to confirm
Eq. (5) only or the assumption that the second term on the right side of Eq. (4)
is neglected. This appears to be a reasonable assumption. Moreover, the authors'
corclusion that the deviation from sphericity does not contain a term which is
quadratic in the width of the gore is confirmed in our own analysis as shown in
the Appendix.
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However, Eq. (5) must be questioned in that it contains the term €_ in
the denominator. Also, when the second term on the right side of Eq.(4)9is
neglected, the use of a Fourier expansion appears unnecessary since the additional
displacement can then be obtained through direct integration. This also leads
to the predicted "kink" in the final shape as a result of the seam reinforcement.
Finally we are tempted to question the actual quantitative results which,
according to the authors, vary with the fourth power of the width of the gore.
Since the origiral development of Eqs. (1) and (2) was correct up to only the
second power, the conclusions are believed to be unreliable.

The strains obtained in Eqs. (1) and (2) are somewhat at variance with
the ones derived in Section C.5. If, in conformity with the discussion in Sec-
tion G.5, the strain € is assumed to be of the same order of magnitude as
(x/n)<, that is, if °

2 e =\ (x/n)g,

then Eq. (2) takes the form

T \2 A 1 2
ecp = ( o )= ( 2 "3 cos= 0) + . ..

if again only terms up the second power in =/n are included. In contrast, it

is shown in Sectign C.5 that € is independent of 6 so far as the term involving

(:t/'p_)2 is concerned. Since it Is this variation which forms the basis for the

correction during the unloading process, it appears that the authors' subsequent

developments are without proper foundation.

However, assuming Eq. (6) to hold during unloading, the authors develop
Egs. (7) and (9) on the basis of Eqs. (1) and (2). We have been unable to
follow the rationale behind this procedure. Eqs. (1) and (2) give strains
which are inadmissible, according to the authors, and which give rise to addi-
tioral radial displacements as indicated in Eq. (5). It is not clear why these
corrective displacements have not been incorporated in the strain expressions
before proceeding to the determination of the unloading process. In any event,
in view of the uncertain validity of the assumptions underlying all these
equations as well as of the prelimirary computations carried out in Section C.5
we are not tempted to place too much credence in the quantitative results
obtained in the ARC report.

C.3  EXPERIMENTAL PROCEDURE

In contrast to the foregoing discussion, the test procedure as outlined
in the ARC report appears to be sound and well conceived. The program is fairly
straightforward, and the results should be reasonably reliable, given a fair
degree of care during the experiments.

We find the substantially lower value of the stiffness KO, as compared
with the predicted value, as puzzling as do the authors. However, the authors!?
eéxplanation in terms of a miss-match of the cylinder with the splicing material
is somewhat bewildering. In particular, we have been unable to find a rational
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derivation for the equations on Page 23. Perhaps this is due to a laxity in
the definition of the terms. As the equations are written, it would follow
that the specimen is subjected to an axial force and a bending moment for
vanishing values of €. Rather we expect that the apparent "softness" of

the specimen is due to the substantial unevenness and wrinkles which produce
extensions under forces which are substantially smaller than they would be in
the absence of such wrinkles.

C.4 PRINCIPAL DISAGREEMENT

We believe that the structural analysis contained in the ARC report
does not represent a safe prediction of the firal shape of the Echo II
balloon. A1l deviations from true sphericity during unloading are computed
on the basis of the assumption that the balloon, during the inflation process,
becomes a perfect sphere through radial motion. This assumption is unconfirmed,
untenable, and contradicted in our own preliminary study.

C.5 AN INDEPENDENT ANALYSIS

In what follows we develop the basic equations governing the idealized
case of an elastic balloon of homogeneous properties and composed of a large
number of gores. For simplicity we assume Poisson's ratio p to vanish; this
introduces no significant deviation from generality. We assume a circular
cylindrical coordinate system in which the z axis represents the axis of
rotation of a representative cylindrical gore segment and in which the x and y
axis form the plane containing the center line of that gore. The y axis points
toward the pole and the x axis lies in the equatorial plane. We denote unit
vectors in the coordinate directions by e ey, e respectively.

If r (corresponding to r_ in the ARC report) denotes the radius of the
gore cylinder and 6 the latitude of a generic point, then the position vector
in the original configuration can be written as

r=rcosbe +rsinfe +ze (c.1)
X y z

In the deformed state the position vector is
R=7+ (wcos 6 - v sin 6) éx + (w sin® + v cosH) éy +u éz (C.2)

in which u, v, w represent the displacement components in the axial (z),
circumferential (6), and radial direction, respectively, and are each to be
treated as functions of the variables 6 and =. The boundary of the gore is
given (originally) by z = @ r cos 6, in which @ represents the very small half
central angle at the equator and corresponds to the ARC term /n. Henceforth,
for the sake of simplicity, this boundary will be referred to as B.

It follows from the symmetry of the problem that all points on B move in
the plane containing B and the center of the balloon. This can be expressed in
the form _ o

R.e =aR-+e_ onB
z X
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which, after substitution of Eqs. (1) and (2), leads to
u=0a (wcos 6 -v sin 6) on B (c.3)

Note that Eq. (C.3) as well as the boundary conditions developed later on must
be satisfied for all values of 6.

A further result of the symmetry of the deformation is obtained by setting
the shearing membrane force equal to zero on B, that is

S=0 onB (C.4)

This shearing force S is expressed in terms of the displacements later on.

A final boundary condition is obtained from the assumption that the shell
has vanishing bending stiffness. In the "membrane" so obtained, equilibrium
requires the absernce of discontinuities in the surface slopes (unless there exist
concentrated forces). In_the present case this implies that the balloon must
be "smooth" at the seams;™ in view of the symmetry of the deformation described
previously, this in turn means that the vector normal to the balloon surface must
also lie in the plane of B, that is,

R

g X ﬁ,z . éz = ﬁ,e X ﬁ’z . éx on B,

in which a comma followed by a subscript represents the partial derivative with
respect to the associated variable.

When Egs. (C.1) and (C.2) are substituted in this equation, and after
linearization with respect to the displacement components, we obtain

w, = - cosf (1 + u,z) - %’ [(w,6 - v) sin6 + (w + V,e) cosf] on B (C.5)

In line with the assumption of the vanishing of Poisson's ratio, the membrane
forces are expressed in terms of the displacements as follows:

. 1 =z
N, =K <§,F + > wd," >

K
N =7 (v,e+w) (K

U,e
* +va)
r 2

In Eq. (C.6) we have retained some non-linear terms and have discarded others;
this is consistent with the assumption of "shallow shell" theory.

E t) (C.6)

28 =

~

We now expand the displacement components in a power series near the central
line z = 0 as follows:

A more realistic analysis involves the development or retention of slight
kinks as boundary layers. This has been discussed in Appendix B.
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w o _ Z
r_a+b 2 io.o
r
u ” '73 (C
= = 2+ 2+ .
r ©r d 3 =" 0,
x
'\7 "2
- = + 4 4
I‘ f gg_OOOl
r

in which the temms a, b, etc., are functions of 6. A so, Eq. (C.7) already
take account of obvious symmetry conditions with respect to the central line.

If Eq. (C.7) is substituted in Eq. (C.6), then the membrane forces are
also expressed in terms of power series in z. These membrane forces are sub-
ject to the three equations of equilibrium

SJ
N o+ —2 -
Z,2
N 2
6,06 )
+ 27 -
S, ¥ 7 =0 (c.8)
r g Wz TP

in whick the last equation represents again an approximation consistent with
shallow shell theory, and p designates the internal pressure. Substitution of
Eqs. {C.7) and (2.6) in Eq. (C.8) results in a system of equations, which, for
5 = U, assumes the form

6d+4b2+% "+ gt =0 (a)
Tetrg e ral =0 (b) (¢.9)
ft'+a-2bec = %E (e)
Similarly, Eqs. (C.4), (£.3), and (C.5) lead to
(:"*‘Eg:-d'CZQCOSEQ‘_I‘... (d)
3
c -a+ftand = - (d - b + g tand) a2 cos2 6 +. .. (e) (c.9)

2 b+c +3g' tan® +a + f' - f tanb =

-1-(3d+b'tan 6 +b + g' - k tan 0) a2 cos2 2} (£)

2 The exact equations of equilibriumrelative to the deformed configuration
contain further terms, which can be ignored in the present case.

3

The terms omitted contain powers of & higher than the second.
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in which a prime represents the derivative with respect to 6.

Egs. (C.9) constitute a system of six non-linear differential equations
in the six unknown functions a, b, ¢, d, £, and g. The general solution of
this system is, of course, involved and is therefore not attempted here.
However, if it is assumed that all functions are regular in @ near @ = 0 and
can therefqre be expanded in a power series near @ = 0 (that is,
a=a_ *t G‘al * ... ete), then it is possible to find the solution by means of
the ufual perturbation technique by equating individual powers of @ to zero.
Also, it wil% be assumed that the right side of Eq. (C.9¢) can be exaressed in
the form A @ in which A is a term comparable in magnitude to unity.

In the perturbation expansion described above, the system of equations
involving the terms independent of @ leads to
= ]—_0 = l_!‘ = = =
by=-53d =-%gsa =... = g, =0 (C.10)
It is noted that Egs. (C.10) do not represent the only possible solutior;
however, the other solutions are physically unrealistic and lead to difficulties
in the higher order expansions.

For the terms quadratic in @ we arrive at the following system of equations:

g l 1" 1"
— +— M + =
6 dl 4 bl 5 ¢ g, 0 (a)
5 et tg tEH"Ha =0 (b)
1 - 3
fl + ay + ¢y = A (c)
(c.11)
1 I -

c;tt2g =0 (d)
¢ -ap* fl tan 6 = - % cos 6 (e)

2
oh. + + ! + + £t - F 0 = :
dbl ¢, taj tanb ay fl fl tan cos 6 (f)

By combining Eqs. (b), (c), (d), and (e) we are led to the following equations:

ap + 7 =0 (a)
(C.12)

1
ot = - - =
fl + fl tan 6 = 2 Cl A 3 cos 6 (b)

ir which Cl is a constant integration. The general solution of Eq. (C.12b) is

4 See Section C.5.
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4 0 0 |
fl = [ 02 +/(2 Cl ~ N) In tan <i§ + g'> -3 } cos 0, (C.13)

in which C_ is another constant of integration. Since, at the equator, v
vanishes, “and because of the_regularity requirements at the poles, it
follows that C, = 0 and Cl =N , that is,

2 2
0
= - = 0 C.
fl 3 cos (C.14)
and, in view of Eq. (C.12a),
1 o N
= — - — 7 + -
aj =3 cos 6 5 sin ) 5 - (C.15)
Substitution in the other equations leads to
A ~ o
17538 =0 (C.16)
and finally, in view of Egs. (C.11a) and (C.11f),
b, = % (cos® 0 - N+ % sin 6 tan 6 (c.17)
d; = % (cos® 6 - A) o+ % sin @ tan 6

The process could now be continued for the determination of the higher
order terms; however, this is not attempted here since the main purpose of this
investigation is to present a comparison of our solution with that
presented in the ARC report. It is felt that the results obtained here and
evaluated further below afford such a comparison.

With all the functions so obtained we determine the displacements, after
letting z =a r §,

% - ag <:% + % cos 6 - % sin @ - % QE > Teo.

u_ 3 (A 143
z oc<2§—6C >i (€.18)
X:_f—ecose'l'..-

r 3 -

It is noted that Eqs. (C.18) and especially the presence of a circumferertial
displacement v, are incompatible with the authors' assumed radial movement.
Similarly, the membrane forces are given as

2
o
NZ—K)\- 21-' * e e
a2
Ne :K%--Q—i . . L) ((:'19)

<
@
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We note that, so far as the terms involving the second power of & are concerned,
the membrane forces are constants; this is in contradiction with the ARC report,
as already discussed in the main body of this study.

Finally, with the displacements given in Egs. (C.18), we determine the
positior: vector in the deformed state by substitution in Eqs. (C.1) and (C.2).
If we call R the final distance of a generic point from the center of the balloon,
we obtain, for z = 0,

R A 1 1
- = + =~ 4+ = Q - = 7 + . .
" 1 a2 ( 5 3 cos 6 3 6 sin 6 > . . (C.20)

The same expression is obtained for any other value of z. In other words,
within the approximation implicit in terminating the series with the second
power of @, the parallels of latitude are perfect circles. To the extent that
the deviation from true circularity does not appear for terms of power less
than the fourth, the present study is in agreement with the ARC report; however,
no agreement as to the magnitude of the fourth order term is implied. Moreover,
Eq. (C.2¢) shows that the meridians are not true circles and that, within the
limits of the expansion employed here, there occurs a flattening of the

sphere which is given by

a2

(e=o)-§(e=g)=g—(2+zr)i... (c.21)

==

This flattening effect is missing in the ARC report; this is not surprisin
inasmuch as the ARC report is based on the fundamental assumption of radial
motion iwto circular shape.
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APPENDIX D

This report is concerned with the Radar Reflectivity Measurements per-
formed by Conductron for NASA as part of the Static Inflation Tests, Lake-
hurst, NAS, June - July 1963.

D.1 DESCRIPTION OF MEASUREMENT PROCEDURE

A scaffold, 48 feet high, was erected in the Lakehurst NAS main dirigible
hangar. Upon this scaffold was constructed a wooden track, 86 feet in length.
The track formed a circular arc; 100 feet from the surface of the balloon, which
when inflated, had a radius of 67.5 feet. The angle subtended by the arc was
300. Figure D-1 illustrates the relative position of the infTated balloon, the
scaffolding, and the hangar interior. Figure D-2 illustrates the plan view of
the relative positions of the balloon and the scaffolding. At either end of
the track was located two standard gain horn antennas, one L-Band and one C-
Band. They were mounted back to back so that by a rotation, either one could
be made to point at the balloon, aligned along the balloon radius. These horns
were the transmitting antennas, being connected, respectiveIy, to a 1.7l KMC
and a C-Band CW source. The sources were located on a platform mounted just
beneath the track. A small wooden cart was constructed to move along the track.
On the cart, similarly to the transmitting horns, were mounted a third pair of
horns. These served as receiving antennas, and were connected to a Scientific
Atlanta receiver, located on the deck of the hangar. The coordinates of the
recorder chart were db vs. angle. The cart was motor driven, and its position
on the track was synchronized to the motion of the recorder chart, so that the
angular position of the cart could be made to coincide with the recorded posi-
tion on the chart. The cable from the receiving antenna to the receiver was
slung so that constant cable length could be maintained, independently of cart
position. Figure D-3 is a sketch of the physical arrangements.

Switching was provided so that all changes of electrical connections and
positioning of the receiver cart could be controlled from a console which was
constructed and located adjacent to the receiver. Rotation of the horns was
performed by technicians who were located at either end of the track. Tuning
and monitoring of the RF sources was performed by a technician located on the
source platform. The mounting of the horns was constructed so that axial rota-
tion could be performed, permitting change of polarization.

One hundred feet from the scaffold and on the opposite side from the bal-
loon, a tower was erected, atop of which was placed a flat calibration plate
whose position could be remotely controlled and synchronized. During ¢alibra-
tion runs the horns were aligned in the direction of the flat plate. Calibra-
tions were performed at 5.85 and at 1.71 KMC. Prior to a test sequence, the
C-Band horns were aligned in the direction of the flat plate, with the receiver
cart adjacent to the left transmitter horn. All horns were at vertical polari-
zation. The 5.85 source was connected to the left transmitting horn, the flat
plate rotated, and a flat plate pattern run off on the recording paper. The
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Figure D-2 (Not Scale) Plane View of Scaffold-
Balloog Configuration. Viewing Aspect
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Figure D-3 Sketch (Not Scale) of Scaffold
Antennas and Receiver Arrangement
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voltage source was then connected to the receiver through an attenuator and
adjusted so that the receiver pen coincided with the flat plate maximum. A
straight line pattern, using this attenuator setting was run. The right trans-
mitter was then connected, a new flat plate pattern recorded, and its maximum
compared to the straight line pattern. The attenuator setting was then read-
justed so as to lie midway between the two flat plate maximum. This adjust-
ment was maintained throughout the test sequence, and used as the calibration
level for measurements at 5.85 and 5.65 KMC. Its nominal value at 5.65 was
obtainzd by computation. The L-Band system was similarly calibrated. At the
conclusion of a test sequence, the stability of the source was tested against
a flat plate run. For no test sequence was there observed a change in the
calibration level.

A test sequence was performed in the following steps:

1. Upon being notified by the test director that the balloon had been
inflated to a given pressure level, which was to be maintained throughout the
test sequence, the 7-Band system was connected and the horms, all polarized
vertically, were aligned on the balluon, the receiver cart adjacent to the
right transmitter,

2. The right transmitfter was counnected, and the cart moved to the
left, the sigral level being recorded.

3. When the receiving horn reached the left most position, the left trans-
mitter was connected, and the receiving horn run to the right. Simuttaneously
the right transmitter was rotated to horizontal polarization.

4, Upon reaching the right must position, the right transmitter was
conriected, the receiver run to the left, and the left transmitter rotated
to horizontal.

5. Upon reaching the left most positicvn, the left trarsmitter was comnected
and the cart run to the right.

6. Upon reaching the right most position, the receiving horn was
rotated to horizontal, the right transmitter connected, and the cart run to
the left. '

7. Upon reaching the left most position, the left transmitter was
connected, and the cart run to the right.

8. The recording paper was then calibrated with the secondary standard.
These steps were then repeated for 5.65 and 5.85 KMC. In this fashion, at

each frequency, patterns were obtained, which for simplicity, were successively
labeled in the following manner:
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TRANSMIT RIGHT \%4%
TRANSMIT LEFT \%4%
TRANSMIT RIGHT HV
TRANSMIT LEFT HV
TRANSMIT RIGHT HH
TRANSMIT LEEFT HH

For any transmit position, the bistatic angle increased from 0° to 300. The
"specular" angle, defined as the bisector of the bistatic angle, increased
from 0" to 15°. If the specular angle were redefined to be the angular posi-
tion on the balloon corresponding to the specular ray, letting, for conven-
ience, the right most position SorreSPSnd to 07, then for TRANSMIT RIGHT, the
speculag angleoincreased from 07 to 157, and for TRANSMIT LEFT, it decreased
from 30" to 15 .

e balleon was constructed of adjacent gores, each subtending an angle
of 1802 3.47. The sector of the balloon corresponding to 0% - 15° contained
two adjacent reinforced gores; therefore, the patterrs corresponding to TRANS-
MIT RiZHT represent a specular angle which passes over the reinforced gores,
and those corresponding to TRANSMIT LEFT, a specular angle which does not
pass over the reinforced gores.

D.z BACKCROUND LEVELS

The xadar cross-sectign of a conducting sphere, 67.5 feet in diameter,
is 1335 m7, or 31.2 db > m~. Following usual practice in cross-section mea-
surements, it was felt that to validate the measurements, the background
levels must be maintained at least 10 db and preferably 20 db below this
nominal value. The antennas being located 167.5 ft from the center of the
67.5 foot (radius) balloon, the balloon subtended an angle of 44° of the an-
tenna beam. Antenna patterns of the standard gain horns were measured at
the Conductron Range. At 227, the poorest of the horns (in terms of beam-
width) had a power gain of - 12 db relative to its peak. Therefore, any
power radiated past the balloon and reflected from the back wall of the hangar
was, automatically, 12 db below the specularly reflected power. The back-
ground levels in the hangar were found, prior to balloon inflation, by mount-
ing a transmitter on a crane, and transmitting from the nominal location of
the center of the balloon. Receiving antennas were also mounted on cranes and
moved along the planned position of the receiver track. The data was cali-
brated and the signal power received was found to be 20 to 30 db below the
nominal return from the balloon.

A more serious background effect was direct cross-coupling between the
transmitting and receiving antenna. In preliminary tests, there was superimposed
upon the cross-section pattern a sinusoidal oscillation which decreased as the
bistatic angle increased. This oscillation occurred in both frequency bands.

The period of the oscillation was consistent with side lobe coupling, since the
maxima and minima occurred when the antenna separation was such that postulated
sidelobes would be, respectively, in and out of phase. In any event, dielectric
absorber sheets were placed next to the transmitting antennas, shielding them
from the receiving antennas. The result was to eliminate completely the appar-
ent coupling at C-band, and to reduce it to a maximum of 1.5 db at IL-band.
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It was not felt that this last residual coupling compromised the data because
it was clearly identifiable, and could be taken into account in the analysis
and reduction task.

D.3 DATA CORRECTION

Fach calibration consisted of four measurements. As noted above, a secon-
dary source was adjusted to locate the receiver pen midway between two flat
plate maxima before each test series and compared to two flat plate maxima after
each test series. Using all cf the calibrations so obtained, the mean calibra-
tion level at L-Rand was 25.5 db and 36.7 db at C-Band. At both bands, the
standard deviation was less than 1/2 db.

Because the antennas were located in the near zone of the balloon, it was
necessary to apply the near zone correction to the data. In Section D.7, the
derivation of the near zone correction for a sphere is derived. Taking into
account the fact that the bistatic angle 2 o is less than 300, the formula at
the bottom of page of the appendix shows that the measured magnitude of the
bistatically scattered field is

(m) a
E - Eo 2r ?

where E, is the magnitude of the incident field, a is the radius of the sphere,
and r is the distance of tha antennas from the center of the sphere, If the
magnitude of the field backscattered by the calibration plate, is Etcf, then

1
\/4 n (x - a)2
()

where g/ is the cross ?eﬁticn of the calibration plate. But then, the
measured cross section o m) s

m 2 N
Vo C 2 - :
o = < Ec > c(k) = (ra%) (& a}a.
2

E r

Thus, the true cross section, n a , is

<;;i a > G(m);

for r = 167.5, r - a = 100

< a2 = <é?%;7;>2 L"_(m) . (1.67)2 G(m),
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or
xa? = o™

+ 4.5 db.
Thus, the near-field measured cross section must be increased by 4.5 db to
obtain the true cross section.

The antenna taper, previously mentioned in connection with background
levels has an effect upon the data. At the mdximum bistatic angle, that part
of the balloon which is most significant for scatterlng, i. e., that part in
the neighborhood of the bistatic angle bisector, is at the 9.5° point of the

antenna pattern, with a consequent power loss. The resulting data correction
is:

3 db, at L-Band, horizontal polarization

2.2 db, at L-Band, vertical polarization,
5 db, at C-Band, horizontal polarization, and
4 db, at C-Band, vertical polarization.

+ o+ 4 +

These corrections must be applied to the measured cross section at bistatic
angles of 30°. For lesser bistatic angles, we have interpolated linearly.

D.4 THE STATIC INFLATION TESTS

During the period, 1 June - 10 August, 1963, three A-12 balloons were in-
flated. Balloon No. 9 was initially inflated to check out systems. Balloon
No. 11 was then inflated to rupture, Balloon No. 9-was reinflated.to rupture,
and Balloon No. 13 was inflated to rupture. R.F. data was obtained for all
three balloons. For balloons No. 9 and No. 11, measurements were made at
1.71 XMC, 5.65 KMC, and 5.85 KMC. The test procedure was to inflate the bal-
loon to a given nominal surface stress, to maintain the stress while a complete
R.F. test sequence was performed, to reduce the stress to approximately 500 psi,
and to perform the test sequence again in this "relaxed" condition. This was
then repeated at a higher pressure, until rupture. It was very quickly observed
that the HV cross sections were, with few exceptional points, well down
in the background.

To analyze the data, it was decided to divide the balloon into 50 intervals.
After making the corrections to the data noted above, the average cross sectitn
on each 5° interval was measured using a planimeter, and the scintillation on
the interval (i.e., the difference, in db, between the maximum and minimum
cross section. There was not enough difference between the 5.65 KMC and 5.85
KMC data to warrant considering both, so 5.85 KMC was chosen. The results are
shown in Tables D-1 and D-2. The columns headed 0, 5, 10, 15, 20, 25, are the 5
intervals starting from the right (reinforced gore)l. The entries under m"
are the mean values relative to the nominal balloon, and the entries under "+"
are the scintillations.

Balloon No. 13 was designated to be the prime data balloon. In order to
keep the balloon under stress for shorter periods of time, it was decided to
omit the 5.65 KMC measurement and to perform cross polarization measurements
only as spot checks. Theresults are listed in Table D-3.

1
For Nos. 11 and 13 Balloons. For No. 9 Balloon, the reinforced gore was
on the left. D-7
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TABLE D-1
MEAN VALUES AND SCINTILLATIONS OVER 50 INTERVALS

NO. 11 BALLOON

15 20 25

10

Psi

Pattern #

+1

+!

+1

+1

+1

+1

< S

e _RoNe

O o O I~

O

46 - 63

ErEyigde

1500

82 - 99

NN O

126 - 143

AU O

tnmn4dAN

™ O~

<t o0

162 - 179

e

500

180 - 197

TABLE D-2
MEAN VALUES AND SCINTILLATIONS OVER 50 INTERVALS

9 BALLOON

NO.

Psi

Pattern #

50

202 - 217

D-8
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TABLE D-2 Cont.

+1

m25

+1

20

-+

ml5

m10 +

+

0>

moi

Psi

Pattern #

1500

230 - 241

<t <t OO

A<~ O
SeIAVNTaNTaY

OQOJ._

2600

260 - 269

<t N B

— N QA
[QV GV 2 TaN

O

O -

— = OO

mem
—_ OO

4800

280 - 289

——~ OO

S

500

290 - 299

TABLE D-3

MEAN VALUES AND SCINTILLAT

-
o

TON OVER 5° INTERVAL:

T
L

NO. 13 BALLOON

Psi

Pattern #

< QN oo M~

O~ mm

™ <t \O\O

O mANQ

<t < oo

O mAa ™

<t ¢ -\O

OOV m

™o
— —

OHI ™

N\ < \O >~

o NN

> >
Hef s

400

312 - 329

< <F\0\O

AN r=HO

(SHESPTRS TN

o Q- o0

m o oY

OrHmaom

322 - 339
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TABLE D-3 Cont.

Fattern # Psi
o 0 + n + m 10 + R + 20 +
340 - 347 2800 L, 2 3 1 3 -1 2 1 3 2 4
Lir L 2 0o 3 -2 5 2 2 2 2
Gy o 3 1 5 -1 6 -2 6 -2 6
. 0 4 1 8 -2 9 0 5 1 5
348 - 359 4800 LV 2 1 L 2 0 3 0O 3 1 5
L, 2 1 2 2 0 3 2 3 3 3
G 1 3 1 5 1 4 -1 5 0 5
cé o5 1 5 0 6 0 4 1 6
360 - 371 500 Lv 22 1 3 1 4 -1 3 -1 5
L, 1 2 1 3 0 5 1 4 2 3
Gy 0 5 1 7 1 5 -1 5 -1 5
Gy 0o 5 o 7 -1 7 0O 5 0 5
372 - 383 7400 Ly 1 1 1 3 0 2 -2 3 -1 5
L, 2 2 1L 4 o0 3 1 3 1 3
Sy 0 4 13 0 4 -2 6 -1 6
G 0 3 1 5 -1 7 -2 8 1 6
384 - 393 500 Iy 2 2 1 2 o0 3 -1 3 0 4
L, 1 2 1 3 o0 5 2 2 2 3
Sy o 6 1 6 o0 6 -2 7 o} 5
C; -1 6 1 6 0 7 -2 6 -1 5

L.5 DISCUSSINON OF THL RESULTS

For the prime data balloon No. 13, we are interested ir the mean values
and scirtillation as functions of frequency, pressure, and p:larization. To

exhibit this dependence, we have chosen to display the data in the following
tahles, Table D-4 aad Table I-5.

TARLL D-4

m - REINFOROED GURE m - SUMMED (VER CTHER GORES®
ST L. IH b.V '..:H IL\, L : bv bH
400 0 1 4 3 3 9 18 18
1500 0 1 3 3 5 11 -1 1
2800 1 0 1 1 6 5 -6 0
4800 1 2 1 1 4 9 0 2
500 1 1 1 0 -1 5 -1 -1
7400 1 1 1 1 -2 5 -3 -3
500 1 1 1 L 1 7 -3 -5

*These sums, when divided by 5, give the average values of m and + for
the unreinforced part of the balloon.

D--10

HHEMNDN

=N O

3

O OO HO P

= o O

25

|+

Ul 3 W

WD w IO\ B Jt\J O w

NI W




Conc[uclron Corpora{ion

TABLE D-5
+ - REINFORCED GORE + - SUMMED OVER OTHER GORES*
b3l Ly Iy “y Cy Ly Ly Cy Cy
400 3 3 11 12 20 18 32 34
1500 3 3 8 9 15 14 26 28
2800 3 3 5 8 16 14 28 28
4800 2 2 7 7 15 14 22 26
500 3 3 7 7 18 18 31 27
7400 3 4 3 5 14 13 22 27
500 2 3 6 6 16 15 29 30

These tables are self-explanatory and represent the final reduction of the

data obtained on the No. 13 balloon. They reveal several clear, albeit slight,
dependences upon the parameters. It should be borne in mind that first of all,
the computations exhibited in the tables in this report have been rounded to the
nearest decibel, and that small db differences in cross section can correspond
to larger percentage differences in fields, and therefore represent significant
physical effects. The data reduction herein has been designed to extract from
the raw data an expression of systematic dependence upon parameters. It re-
mains ar open question to decide the effects of their dependence upon a parti-
cular commuaications system. Even though the scintillations in the radar cross
section of an A-12 balloon may be large, they are systematic and predictible, and
a program to design them out of a communications system through the use of
filters is feasible.

*These sums, when divided by 5, give the average values of m and + for
the unreinforced part of the balloon.

D-11
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D.6 SAMPLES OF RAW DATA
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D.7 NEAR-ZONE BISTATIC SCATTERING BY A SPHERE

The high frequency near-zone bistatic scattering by a perfectly conducting
sphere for a receiver in the illuminated region is considered. For large values
of ka, where k is the free space wave number and a is the radius of the sphere,
the dominant contribution comes from the region of the specular point with the
diffracted field being insignificant. In particular, for the present case ka is
the order of 2 x 103.  The near zone bistatic field can be obtained using the
Kline-Luneberg asymptotic expansion, for which the analysis was worked out by
Schensted [1] for phane wave incidence on bodies of revolution.

D.7.1 Bistatic Scattering for Plane Wave Incidence

Let a plane wave travel in the direction of the positive z-axis and
pclarized in the x direction. Consider a sphere of radius a, whose illuminated
portion of the surface is given by

£(p) = a- A a° - g (D-1)

where
p = 4 X2 + yg.

The scattered field has the form

B8 . olkS AN E (D-2)
= =n
n=0

N
It

™

For the case on hand, only the first term given by n = O need be considered,
since the remainder of the expression is the order of 1/(ka). The phase fac-
tor s is the distance along the incident ray from the z = O plane to the specu-
lar poin%, plus the distance along the scattered ray from the specular point to
observer. See Figure D- L, s is the distance AB + EP. The leading term of
expression (D -2 ) has the form

1/2
(25 s v e -
P

where for the observation point P, p is the distance of the specular point
B from the z-axis. If the bistatic angle ABP is defined to be 2 a, then we have

p = asin«a ’ (D-k)

The angle ¢ associated with the position of the observer P is the angle between
the y = 0 plane and the plane containing the point P and the z-axis. The values
of h, and h¢ can be found on using Equations D-1,D-4 and reference [1] to have
the form

D-18
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2 g

h =1 +
P a cos a

N (D-5)

. 25 .
h, = asina [1+ == ccs al
1) a
~ N ~
where s is the distance BP. The vectors @ and p have the form

X«\ N N
$ = -sin@ i 4 cos @ i
~ x N Y A ~ (D-6)
p = cos 2 [cos ¢ i # sin @ iy] #sin 2 ad,

To complete the picture we need to find ¥ in terms of the angle & and the dis-
tance r of the observer from the center of the sphere. It is seen from Figure
D'—Ll', that

S a r
sin (6 - &)  sin (2a-6)  sina (-7

Soivirg the last two equaticns for 6 - o, we have obtained

sin (9 - o a ase .. 2
Sin o = -7 ces a + J 1 - (':E‘) sin O (D_8)
thus giving
v O .
§=a[-cosa+ J (;) - 51in.2a] (D-9)

herce combinirg the above results we cbtaicn

1/2

E\% c rye 2
A[I =<hi> B [<1—2C‘°‘50"+20&so¢ (g)a—sin/a>
p o |
(p-10)
< (-1 2 e .2
< i cos O A/(a) sin~ o |

-1/2
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D.7.1.1 Relationship Between Near-Zone and Far-Zone Results Let a transmitter
be located at point T (Figure D-5). We shall assume that it is sufficiently

far away from the sphere so that the specular region lies in the far—zone of

the antenna. In addition we shall first assume that locally in the region abput
the specular point the incident wave can be treated as a plane wave. Let E° i
be the electric intensity of the incident radiation at the specular point.

The scattered field in the near zone and far zone will be given in Table
D-6, for the following two polarizations. Specifically we shall consider ver-
tical and horizontal polarization, where the incident radiation is respectively
polarized perpendicular and parallel to the plane formed by the transmitter,
the receiver %previously called observer) and the center of the sphere. The
scattered field for the horizontal and vertical polarization cases are found
by setting # = O, and @ = n/2 respectively in Equations D-3 and D-6.

As seen from Table D-6, there are no cross-polarization terms. This is
because the cross-polarization terms occur in the terms of the series (Equa-
tion D—%) which have been neglected, and are of lower order by a factor
5 x 1077, The angle 2& is the far-zone bistatic angle. To extrapolate far-
zone results from near zone results this angle must be fixed.

We next come to the question of changing the assumption of plane wave in-
cidence. A more accurate assumption with the transmitter at a finite distance
from the sphere is to treat the incidence wave in the neighborhood of the specu-
lar point as a spherical wave. The main effect of this is to change the factor
4 D(0)/D(3) given by Equation D-10. For simplicity we will take transmitter
and receiver to be the same distance r from the center of the sphere. The
"divergence factor" 4 D(0)/D(8) can be obtained from Fock [2],

AI_DW =§_r { cos « }1/2

M(% sin® o + cos Q@ M)

with M =4j 1- (% sin a)2

Thus if a spherical wave is assumed incident, then Table D-6 must be modi-
fied in that the near field magnitude (the second column) must be replaced by

a cos & }1'/2

o er M(-g sin® & + cos Q M)

REFERENCES :

[1] Schensted, C. E., "Electromagnetic and Acoustic Scattering by a Semi-
Infinite Body of Revolution," J. Appl. Phys., 26, 3, 306-308 (1955).

[2] Fock, V. A., "Generalization of the Reflection Formulas to the Case of
Reflection of an Arbitrary Wave from a Surface of Arbitrary Form, Z.E.T.F.,
20, 961-970 (1950).
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T = transmitter
P = receiver
200 =

Figure D-5 Bistatic Geometry

bistatic angle

D-22




C omluclron Corpora{ion

e
Bmﬁm - mamv\/\

= .H
9T8uUR DIJ3R3ISTIQ JUOZ-IR] = OZ
axayds JOo Xo3Usd WCXJ I333TWSURIJ JO 9OURISIp = I
TINLYTONIWON
o
9
a
TROTIIBA aA0Qe Sk Jweg aa0qe Se aueg TeOT3IBA
TRIUOZTICH i om 1 pS02 +Hluﬁg&moom+6 moomlamﬁom Te3uez1ICH
T E e/1= ¢ M 2 o
TII1d aTYdIIVOS aTrITd QIEILLVOS INOZ-¥V4d QTITd AEMILLVOS INOZ-4VIN NOIIVZIUVICd
JANLINSYW JAALINDVN INJGIDONT

JO NCILVZT¥VICd

JONJAIONT FAVM INVId

9-0 I79VL



Comluclron C orporation




Cona/uclron Corporah’on

APPENDIX E

E.1 CONDITIONS FOR WHICH PHYSICS OPTICS APPROXIMATION CAN BE
USED ON A _QUASI-ROUCH PERFECILY CONDUCTING SURFACE

We shall consider perturbations on a large convex surface the values of
curvature of which is everywhere large compared to wavelength, The basic un-
perturbed surface will be given by z = g(x, y), where the cartesian coordinate
system is chosen so that x-y plane is tangent to this surface at the origin.,
The perturbation will be given by z = &(x, y) so that the rough surface is
described by

z = g(x, y) + 8(x, y)e

We shall consider a plane wave incident upon the surface the direction of
propagation lying in the x-z plane. Specifically the incident magnetic
field intensity is given by

1 - a elk(x sin - z cosa)

where |a| < n/2.

From Maue* we have the following integral equation for the tangential compo-
nents of H on the surface

%1w)=f@)+jﬁ%cxﬂm]xgmds¢ (E.1)
S
where
i=nxi
eikr
G=En’.r
with r = lzp - §Q|

and n is the outward normal to the surface. The physical optics approximation
that we seek is that

n X K(x) ~ 2 1 x £(x).

Hence we shall first assume that

* Maue, A.W., Zeit f Physik, 126, pp. 601-618 (19L9).

E-1
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i(x) = I(x) eik(x sind - z cosq)

where I(x) is a slowly varying function of (x).

Integral equation (E.1) can then be written in the form

0 1 1. 1 . g ik f
l(§)=2£(x)+gJ;[lk-;] (Y zxI)xm)e™as,  (s2)
where £ = r + (x' - x) sin@ - (2z' - 2) cosx . (E.2a)

Apart from the exponential factor in the integrand, the integrand is a slowly
varying function. Hence we will look for the stationary phase point. This
is the point for which

£co (E.3)
éy%: 0 (E.4)

where we have taken the coordinates of the point Xq to be (x', y', z') and
the variable of integration x' and y' so that

1 = dx! dv!
n, (x') d SQ = dx!' dy' .
One condition on the surface is that nz(x') =0,

The stationary point specified by equations (E.3) and (E.4) satisfy the
equations

% ‘{kx' -x) + (z' - 2z) %%; + sinQ - cosx %;; =0 (E.5)
1 oz ! ' dz?
= {;(y' -y) + (2! - z) ST cosx ST - 0 (E.8)
Set
x! -x
r B g ’

N
(sina, 0, - cosa) = k ,
A

P = r + E.,

giving from the above
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Py =8 gé;
Thus we have

2 1/2

()]

|2l

0
+
o)
N
—
-]
+
PR
%10/
]
-8
.

P =+ ]2 n(x").

We thus have

(r-k

~
1]
|+
3
+
|~
=]

with solutiomns

~k+pn

in
i

with

15>

A
Oor B=+2k-

™
I

The case where B = O corresponds to observation point x being in the penumbra
region and the stationary phase point x! being in the illuminated region for

the body surface being convex.
e

Figure E-1

For large corrugations the point X can be in the illuminated region, but there

is a shadow corridor separating the two points.

E-3
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~N A
The case where B = 2 k * n corresponds to the case where both x and x'
are in the shadow region for a convex surface.

Figure E-2
N N
The case where B = - 2 k * n corresponds to a concave section of the surface
is shown in the diagram., a '
k

Figure E-3

Physically the stationary point in this case corresponds to multiple scatter-
inge.

From these results we see that in order to use physical optics on a re-
gion of a perturbed surface, we require these regions to be sure that for the
angle of incidence under consideration, there must be no corridors of shadows;
and secondly, the perturbed surface must be locally convex everywhere in the
domain.

With these restrictions there are no stationary phase points and the main
contribution to the integral (E.2) arises from the neighborhood of the point
X

To evaluate the integral contained in Equation (E.2) we will take
x = (0, 0, 80). This places no restriction, only specifying the choice of the
origin. We will consider the particular case where the unperturbed surface
is a very large sphere of radius &, where its equation in the vicinity of
origin is given by

E-4
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z = g(x, y) = - %g (x* + y°) (E.7)

The perturbed surface will be given by

z = 8(x, y) = 50 + e(x, y) (E.8)

where 5, is the value of  at x = 0, y = 0. Hence ¢ vanishes at x = 0,

y = O. ~ In the integrand at the integral on the right hand side of equation
(E.2) we can approximate I(x') by 2 n(x'!) x a where a is the unit vector

denoting the direction of the magnetic intensity vector.

The explicit integral to be considered is

<! dut i
1 dx! dy' oIKf L(x!, y') (E.9)
o5t n_(x?)
X —
where f is given by equatien (E.2a) ard
> . 1 . . .
L =2 (ik - 2) (¥ x [z x al} x n(x) (E.10)
First we have
S R R T -;-5 (x'® + y1#)12
and setting x'2 + y'2 = p2

l,e _p 2
I‘—p[l+2(p—2a)+...]
where we assume that le/p] << 1 as p20. This last requirement is equiva-
lent to requiring that

de o€
XT| 7 |yt

at x' = 0, y' = O, This specifies that the slopes of perturbation are small.
We require Te/p| < <1 for all p in a large region about p = 0. For values
of p < < a, we have

, << 1

2 p a a 38 a2

Thus for a region about p ~ 0, we have
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koS 02

1 k€ kpe P c -
e+ kp cos@sma cos
2 28.

1
kakJ+-2'_ -é-—-+

o a

s |

where %' = p cosé. This expression can be approximated in the vicinity of
p ~ 0O by

2
kf ~ kp [1 + L 37 + cos 6 sin a - 3 cos O]
2 p2 6]

where we have neglected f—) which is extremely small. Thus kf is a rapidly
varying function easentlaily behaving by kg.

We have assumed that the factor L/n_ in the integrand of expression (E.9)
is slowly varying with respect to the exponential. Since the oscillation of
exponential is proportional to wavelength, we require that the variation of
L/n in a distance of a wavelength be small.

The factor L/n_ is a function of the unperturbed surface g(x, y) and
the perturbed surfate 8(x, y) together with their first derivatives with
respect to x! and y*. However, since the unperturbed surface has very large
radius of curvature a, and ka >> 1, then the variation of the above factor's
dependeance on g{x, y) is very small. The main question concerns the variation
with respect to perturbation. Essentially we will require that

2
5_ < <A

¢oing btack to the requirement that the surface be convex, additional restric-
tions can be placed upon &.

The sign of the curvature of the curves formed by the intersection of
the sucface and the x-constant and y-constant planes will correspond to the
sigrns of

2 2 2 - 2 2
_8 5 { W————L—) + e} and 89 - x! 2; y! + € }
dy? 1=

respectively. We regquire that for the surface to be locally convex

2
L .9 < 5o
% - §—-§ >0
oy?
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Hence for a section of the perturbed surface which is a valley we have

O

A

A
o

To illustrate the conditions, let the perturbed surface be represented by
the form

5(x, y)= hcos £ Xcos !y

In this case h = B, It is seen that the requirement 626 < % gives
rise to Bxg

L>n 2,

a

Essentially the width d of a hill or valley is given by d = Z . The above
condition then places the following restriction upon the height h of the
hill or depth of valley

d >q na h a

For example given a hill of height 1/4" and a ~ 810} we have

d > kam,

With the above restrictions upon the derivatives of e(x', y'), the lead-

irg term of the asymptotic expression for integral (E.9) can be obtained by
integrating key parts with respect to the variable p and retaining only the
lower limit of integration giving

21
1 . p L
~ ikan f a9 .1ﬂ"o[ of :|
0 R A 35

Evaluatjon of this integral will give rise to terms of the order (k R )-1,
(k R )L where Ry and R are the radii of curvature of the perturbed Surface
at the point (0,70, & )Y Since these factors are much less than unity, the

correction terms giveﬁ by the above integral to the physical optics term is
small.

E-7
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APEENDIX F

F.l RADAR CROSS SECTION (NASA BALLOON)

This represents an approach tg the prcblems of predicting the radar
cross section of a perturbed spherical surface. The method is basically
a tonsideration of the geometric properties of the perturbations and
what their effects would be when imposed on a true spherical shape.

Figures F-1 through F-5 are topographtic projections of the deviations
from a true sphere of radius r. = 810 inches. These deviations are the
differences in the vertical distance from the true sphere, (see Fgirue F-6),
to the perturbed sphere. Each value of the deviation,.d, is given at a
lattice point on a six-inch grid and is defined to be positive if the per-
turbed sphere is above the true sphere and negative if it is below. If
a collection of points are all zero, then for that portion of the sphere
projected in the x, y plane the perturbed sphere is tangént to the true
sphere,

- The five figures represent the projections for four gores at three
different pressures. The center of the graphs are seam lines between the
gores ard each gore extends tu about the eighth grid on either side of the
seam. We have called areas below the true sphere "valleys' and above the
true sphere *hills"™, A "plateau” is an area where the perturbed sphere is
above the true sphere, but basically spherical in local geometric character.
A "canyon", on the other hand, is a region where a "valley" area is -
beginning to rise. Smalli perturbaticrs, from point to point, have not been
considered and only the gross t:pological features described above have been
mapped.

Figure F-1 shows the projections for gores 102 and 103 at 2800 psi.
In this figure, two features are outstanding, namely a hill rising over 0.,2"
above the true sphere and a deep valley or pit lying about 0.4" below separated
by a distance of arsund 35%, From this figure, it can be seen that the hill
starts to bulge on either side of the seam but dips down into a shallow valley
on gore 103 where it begins to rise again near the lower side. The upper half
and extreme edges of both gores are in general valleys, and seem to be deepéning
at the edge of gore 102 and rising at the edge of gore 103 except at the extreme
upper portion, where it is of course a rather deep pit. Figure F-2 shows the
same gores at a pressure of 4800 psi. From this figure, it is seen that little
similarity exists between Figures F-1 and F-2 even though they are the same
gores. However, it is pointed out that gores 102 and 103 are unreinforced and
this may account for the lack of similarity. In Figure F-2, gore 103 is divided
about midway by a hill cn the left and a valley on the right, This hill extends
over the seam to gore 102 where it becomes a plateau about 0.14" above the
true sphere. Just below the plateau the hill peaks to almost 0.3", and this
is about the only similarity between Figures F-1 and F-2, that is, the hill
peaks are in roughly the same location and are about the same height. Figure F-3

F-1
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True Sphere

Perturbed Sphere

Figure F-6 Section of True Sphere vs. Perturbed
Sphere. True Sphere Radius = r .
fo, y) = Deviation in z Directfon
Between True and Perturbed Spheres.
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is the projection of gores 1 and 106 also at 4800 psi. This figure shows a
hill rising to a peak of 0.2" covering most of gore 106. The hill drops
gradually to a valley on all sides extending over into gore 1 where it drops
into a deep valley at the bottom of about 0.6". Figure F-4 is again gores

102 and 103 only now the pressure has been increased to 7400 psi. The simi-
larity between Figure F-4 and F-2 is a lot more pronounced now, Gore 103 is
again divided into a hill on the left dropping down into a valley on the

right. The hill continues again over into gore 102 where the plateau forms

in approximately the same location at a height of about 0.12" which is slightly
less than the 4800 psi case. It is also noted that the peak in 4800 psi

case blends into the plateau shown in Figure F-4. Figure F-5 shows gores

1 and 106 again which are the reinforced gores. There is close resemblence
between this figure and Figure F-3 which was the 4800 psi case. It is noted
that as before the hill is located on the upper half of gore 106 and peaks to
about 0.2" again in almost the same place. The deep valley is at the bottom

of both gores and is about the same value from the true sphere. Figure F-5
has a rather well defined canyon located on gore 1 but, in general, it is about
the same displacement as seen on gore 1 in Figure F-3.

In conclusion, it has been shown that the undulations of the perturbed
sphere are rather random in nature and are dependent upon whether the gores
are reinforced and at what pressure the balloon is at. The deviations average
about 0.2" from the true sphere and range to as much as + 0.6", These devia-
tions at the frequencies for which the: cross section has been computed are
instrumental in contributing to the oscillation noted in the experimental
results.

A method for evaluating the quantitative oscillatory effect of the
bumps shown in Figure F-1 through F-5 is to consider a physical optics method
in order to approximate the radar cross section. If we consider first, the
return one would expect by illuminating a "hill'" say, the cross section can be
obtained in the following manner. ,

Figure F-T is the projection of the perturbed balloon shown in the z, p
plane where p =+x2 + y2, For a first approximation we assume the perturbation
to be a spheriod whose semi-major axis in the z,p plane is b and a respectively.
However, in computing the cross section, we will further assume that the per-
turbation is smoothly joined to the sphere such that the first derivatives are
matched and the contribution of the matching surfaces caused by a second
derivative discontinuity is of the same order as the discontiniiity caused by
the spheroid joined to the sphere directly.

The physical optics cross section is given by,

| b oikz A . | @
g = —é- f e 1Kz gz- dz (F.l)

N ot
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Mafching
Surface

—

Perturbation

Sphere

Figure F-7 Matching a Smooth Surface to a Perturbed Sphere.

Matching is Done so that First and Second Deri-

* vative Discontinuities are the Same as Perturbed
Sphere
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where A is the area projected on the p plane at a distance z down the z axis,.

s' is the 1it region which is just the hemisphere bounded by -ro - h <z < -h.
In the actual integration, the contributicn from the shadow boundary, z = -rqy -h,
is neglected since theory has shown this contribution to be spurious. If we
define,

2
I = f 2ikz %édz (F.2)
S‘l
then integrating by parts yields,
2ikz ) 2 1
;- ¢ % L og)+o(_.§_ F.3)
2ik : oz k

where I is evaluated over the region s'. The projected area is given by

2
\
T a2[1 - (Z—jFEA— 1, -Db <z <0

b2
A=gxp = (F.k)
2 1, - h - : b
n[ro -(z+x + h)7l, - b - r <z<-

2
Solvizg Equation F. ,%éamiag
oz

derivative discontinuity at the join, the integral is then given by

. 0 2 -2ikb
I = - {-— = + g - - } (F '5)
21k b ikb” ik

ard recallizg that we will assume no first

Substituting Equation F.5 into Equation F.1 for the cross section

2 2 a 2a2
na Aa s A + 1 -—=—==cos 2kb > :
g = sin 2 k b + I v
bE 2b 16 \b b2 (£.6)
2
where b = EE_. +hy r >>a.

For the case of a valley, we will assume that the situation is basically
the same only now the spheroid could lie within the true sphere as shown in
Figure F-8. If the same analysis is applied, we find that the cross section
cne would obtain by considering incidence on the valley is given by

F-10
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Matching
/Surface

Sphere

Figure F-8 Matching a Spheroid to Perturbed Sphere. Sphere
Radius = r . Dotted Line Labeled Matching Sur-
face Repregents a Spheroid Giving Best Fit to
Perturbed Sphere in Valley Region
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na4 2 Aag h2
c = b) (b + h)” - ;;5 (b + h) sir 2k (b + h) + e
b 22
{i’i‘“l‘%coﬂk(b"‘h)} (F.7)
b b
2
where b 2 %;; - hy, r >>a.

In order to consider the applications of Equations (F.6) and (F.T) to
the problem one must determine the values of a and h from Figure F-1 - F-5.
Since, in general, the figures show a partial hill and a partial valley, we
could compute the cross section incident to each if there were more data
available and obtain an average scintillation signature over the region. How-
ever, since not enough information is here at this time to obtain the desired
input for Equations (F.6) and (F.7), the above analysis will have to remain
as an academic approach until such time the information becomes available.

Another approach utilizing the method of physical optics is as follows.
if we go back to Equation (F.3) for the integral, namely,

eEikz SA

)

1 d°A <1 SN

I = Sz 3%~ 3 T O =, (F.8)
2ik z  2ik 822 k3

and assume we have a continuous surface out to the shadow boundary, then,
integrating from z = O to the shadow boundary and excluding the boundary
contribution gives,

= %1{ A*(0) - E%E Am(o)}+ C <;%—> (F.9)

. 1 . ;
Then to O <:—ﬂ-> in the cross section, we obtain
k

=

[A'(o)]2
6 = - (F.10)
T

If we had a true sphere then the change in the projected area on the plane
of incidence evaluated at z = O is simply 2nry, which gives us of course,

c = nrg as expecteds In order to apply Equation (F.9) to the information
available, all one need to do is pick up the center point on Figures F-1

and F-5 and compute A'(0) in the following manner and observe the precaution
indicated.

Figures F-9 and F-10 show the geometry of the situation, where Figure (F-9)
is the projection in the z, plane (i.e., X, y plane). From Figure (F-9) we see
that for the contour of constant z shown in Figure (F-10) the area is given
by

F-12
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N

z + 8

Perturbed
Sphere

True Sphere

Figure F-9 Cut of Perturbed Sphere Relative
to True Sphere :
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e —

Figure F-10 Projected Area for Physical Optics
Evaluation
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1
A(Z) = '§ p2 d 6, (Foll)
where

p2 2 r 8 -2r  z r  >> 3, z. (F.12)

Substitution of (F.11) into Equation (F.10) gives,
2n

A(z) = -enr [z - & f 5 d o] (F.13)
ﬁence 0 ex
at(0) = -err, [1- A L (0) a o] (F.1%)
0

-anr (1 - % (0) )

where §§£91 implies the average value of 8620 in the region 0 < 6 < 2rx.

Z.
Now, consider

3% B
Y5 5 (F.15)
From Equation (F.1l)
1
2 . (F.16)
o _ o
Lence ) T,
QB
L. (Fo17)
ol e
% "
Substitution into (F.13) for A'(0) gives,
=
0
A'(0) = -onr [ R :l (F.18)
> T
0
(—%)
= -21r
(o] - fg 55
P
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subject to the restriction

X

o (F.19)

p >

Stal

within and oa the boundary p = const. Then the cross section is simply,

5 1 2
c = =® Y (F.20)

19 ()

To impiemert Equation (F.20) we draw a circle of radius p, subject to con-
diticn (F.19) at the center of the figures for which one wishes to obtain
the cross section. Then compute,

3% Jals)

% = 5 (ap - acenter)/p (F.21)
at a number of points on the circumference. From these values find the
average value,

6‘6
dp

and substitute it into Equation (F.20) for the cross sections. The
validity of this procedure of course depends upon condition (F.19). If
we examine the physics a little closer, we have by Equation (F.10).

en
1 dp o
At(z) = Py, 46 (F.22)
0
which when substituted back into (F.9) gives,
21
1 pd©o
g = = Br Sz (E‘.23)
0 3

Since z is the equation of the surface the peints on the surface for
which

dz
op

are just the specular reflection points. Hence, if p is chosen such that
the circle encloses a specular point, the results will not be valid.

= 0

F-16
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If the perturbed surface follows the true sphere contour rather closely
then the specular point will be around p = O as can be seen from (F.9).
Therefore, in determining p one must find the specular point and choose
this point as p = O. It can be shown that

P
lim . X = T, (F.2k4)
p - z
z'-> 0 Y

Therefore, no singularity exists within the boundary, and the cross section
will only be valid out to the next specular point. If no other specular
points appear in the region, the cross section should be quite accurate.

In conclusion, it is pointed out that Equation (F.20) will be valid
if the perturbed sphere has a horizontal slope at x = y = 0. 1If, however,
this is not the case, then all one need do is locate the specular point
which should be near the center and measure

03
3

centered around this point. This transformation does not present any change
in the predicted cross section since the portion over which we are measuring
is comparatively flat. If, on the other hand, more than one specular point
lies close to the origin the prediction will not be valid.

F-17
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APPENDIX G

G.1 RADAR CROSS SECTION OF ECHO II

The radar cross section of Echo II can be determined by physical optics
method. Here, the backscattered magnetic field can be determined by

LA T—
_ ijO -u2kRO ~ A —j2ko°r
H, = Eﬁﬁg e U/‘ (ko “n)ae ds (6.1)
where 1

d 1is the unit polarization vector of the incident magnetic field
k is the unit propagation vector of the incident magnetic field
i° is the unit outward normal vector to the surface of the object
T is the position vector of the surface of the object
H 1is the magnitude of the incident magnetic field
Rg is the distance from the point of observation to the scatterer

reference point
Sy is the illuminated surface of the scatterer.

With the propagation vector given by

A

k =% sin 6, cos ¢l *y sin 6, sin ¢l * Z cos 6 (6.2)
and the position vector given by

r=r(Rsin6 cos §+ 9 sin 6 sin @ + 2 cos ) (6.3)

r = (x2 + y2 + 22)1/4 (G.4)

and the position vector given by

r (R sin 6 cos § + $ sin 6 sin @ + %2 cos 6)

68+ 42+ A)L/2 (6.5)

X ty +z

r

r

then

N

k «r=xr [sin 6

. , sin 6 cos (g - ¢l) + cos 6 cos 61] (6.6)

For the Echo II scatterer, the object is a sphere with small perturbations
on the surface, and therefore, the unit outward normal vector can be repre-
sented by
= =% (6.7)
|x]
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and thus giving

k ‘@ =sin6; sin 6 cos (¢ - ¢l) + cos 6 cos 6, (¢.8)

Let B (6, §) =sin 6, sin 6 cos (P - @#,) + cos 6 cos 6., then the scattered
: . X 1 1L L

magnetic field is

JKH

—j2kR
A= e ° f 326 (0, ¢) sino e PBEDT 49 45 (c.9)
(6]

since ds = r2 sin 8 d@ df. For the scatterer under consideration, Echo II,
the surface of this scatterer is assumed to be a perturbed spherical surface
with small perturbations less than a wavelength. The distance r from the
center of the scatterer to a point on the surface can be represented by

r=x + S(ro) (c.10)

where r 1is the radius of the sphere and 8(r ) is the deviation of the scat-
terer ffom a spherical body. Since the deviations are small, only the phase
variations need to be considered so that the scattered magnetic field can be
approximated by

jKI —jekR —jeka(e,@)r
H =§}R—O‘ e ° ri f ap (o, g) sino e ° (c.11)
° S
1
1 - 25k8 (8,8) 8(r,) - 2 ¥ 6% (6,0) 57(x )] @0 dg (6.12)

The first term of the above integral is the sphere scattered field.
The second and third integrals pertain to the scattered field resulting
from the surface not being spherical.

The Echo II balloon was intended to be a spherical body, but due to
the construction, the joining of spherical segments at a seam, the surface
budges and flattens. The amount of budging and flattening is dependent upon
inflation pressure. Plots of constant contours of depression from the
spherical tip for various inflation pressures were made available so that
from these data, the deviation from the spherical body can be determined.
These deviations can best be represented in rectangular coordinates so that
by the use of the rectangular-spherical coordinate transformations,

x =r_ sin 6 cos @
y =r, sin 6 cos o) (¢.13)
Z =Y cos 6

0

G-2
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so that
_dx cos @ + dy sin ¢
o = r_ cos 6 (6.14)
o .
_dy cos @ - dx sin ¢ , :
dg = r sin 6 (6.15)
o o
2 2.1/ ) 2 2.1/2
cos § =x/(x" +y") sin § = y/(x~ + y°)
5 o (6.16)
sin 6 = (x2 + }’2)1/2/1‘0 cos 6 = (1 - L;—‘Z )1/2
. Y
o

Also, S(ro) ~ & cos 6 so that the scattered field becomes

N L L P A -j2kp(e,@)r_
H, =5 e {ro f a p (6,0) sin 6 e d dag  (G.17)
o

s
1
_2 f a 5;&)2& [(x2 - y2) dx dy + xy (dy2 —~ dx2)] (6.18)
- ¥ A X "+y
1
2 .
[ jk B(?:Y) az + k2 B (;:2) ai cos 6 } e_Jng(X)Y)} (Gol9)
o r
where
B(x,y) = (x cos ¢l + y sin 5251) sin 6, + r_ cos 6 cos 0, (G.20)
24 2NL/2
cos 6 = <l - —QL) (G.21)
o

Since the task of defining the perturbed function SZ over all points
become formidable, discrete points will be considered so“that the integral
involving the perturbation function can be written as a sum. With

dx =dy = Ax = b,

and

Il

X =nAx =bn (G.22)

It

y =mAx = bm,

the scattered field is

G-3
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JK_ -jokR -j28(8,8)r
= _ 0 o 2 ~ 0 f o
-5 1)
E: Ez a B {n,m) < > e j2kg(n,m) (c.2k)
n m
B{n,m} 2 Bg(n m) .2
{jk Bl g 4t BALE 4 cos 0 } }- (€.25)
r Znm r2- znm nm
© )
where
a,m) =b {n ¢ : i in .
8/n,m) = b {n cos ¢l + m sin ¢l) sin 6, + x_cos 6 cos 6, (G.26)
2 2 ql/2
_ 2 n +m
cos 6 = [l -b —— } (G.27)
r
o
For the problem at hand, 6 m is small sc that
2
e ~ b = 2 ‘
COS 9:1m 1 - EE— (Ll + m ) ((:.28)
and by letting Ql =
2 2
fo N = . 2 (!1C + m )
g\n,m} = bn sin 91 + r  cos 91 -b ———;—5——— oS 91 (G.29)
r
o
The resultant scattered field is
FkH -32kR
o A 0 J?kﬁ ] ¢)r0
m (o)) = 2‘”Ro { f ap B, §) sinv e de dg (G.30)
51
2 _ic 086
Zba ‘ Jdkrocostl _ m? —32k7(n m)
r 2 2
0 n + m
n m
ko% 2 ai 2
‘:J - %, tK =5 8 ]} (6.32)
o) r
0
where
v{n,m) = bn sin 6 b° (r2 + me) ccs 6 (¢.33)
yin,m) = bn sin 1~ E;z X 1 «33

Gy
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= i +
a% bn sin 91 ro cos 61

(6.33)

5 o s the deviation at point (n,m) from the sphere

The above representation contains within it two approximations. The
first is caused by replacing the exponential in Equation G.9 by the first
three terms in its power series expansion as given by the factor G.12. 1In
order to justify this approximation, an estimate of the magnitude of &(r )
must be found and using this estimate the error induced by omitting the

remainder of the power series must be computed.

The magnitude &(r ) was

obtaired by examining the actual data in the photogrammetric measuFements.
The second approximation is obtained by replacing the integral by the sum-

mation.
the magnitude of the grid size, b.

The accuracy of this approximation is, of course, dependent upon
The computations of the series were

performed using successively smaller grid sizes until the difference in
computations, taking account of the possible error induced by the first
approximation, gave cross section values which differed by less than .75
db. The possible round off error inherent in the computer program was shown

to give cross section error of less than .25 db.

On this basis it is asserted

that the total cross section error of the computation is less than 1 db.

The integral for the scattered field from the sphere, namely

-0 -j2(R -r )
H === 3r e © °
sphere ERO )

For the orientation chosen in this problem, 6
3n/2 so that by letting 6. =6

(G.34)

varies between n/2 and
- n for computatiofi simplication, the scat-

tered field about a norma} aspgct 90 varying between -n/2 and n/2 becomes

o) - Hr, e—JEk(RO—rO) - {1 . o1b2 e-Jkro(-l-coseo)
sV’ T 2R - Tr
o) v 0
where
Ko 2 2
W.(6 ) =§z }; n < n~ -m > e—j2ky(n,m) 5
1o ra n2 " m2 zZnm
n m (o]
2.3
(04 2 2 .
ey = ) Y R (=) Rt
CY r3 n2 - m2
n m )
Q& =bnsinb® -r cos b
n 0 0
b2

, 2
y{n,m) = bn sin R (n" + m2) cos 6

2r
o)

Znm

0,(6,) - 2,(0,)1} (5.35)

(5.36)

(6.37)
(6.38)

(6.39)
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With b = 6 inches, r = 810 inches, k = 2x (0.084f) f in kmec,

_ Hor —j2k(RO - ro) . —j2kr0(l—coseo)
HS(GO) = X e a-{l + 0.0151f e
&Dl (90) - J o, (90)]-} (6.40)

From the inflation test data, values of depression were referenced to
a planar surface so that for the scattered field equation,

2
_ b=, 2 2 .
6znm - 8an - 5?; (0™ + m%) (G.41)
where B is the read value and the second term is the correction for the

spherica?mdeviations. In Table G-1, the average deviation, the average of the
square of the deviation, and the range of the deviation for each gore at the
various pressures are listed.

The cross section of an object is given by

(G.42)

where Hs is the scattered magnetic field and H. is the incident magnetic
field. “For the problem at hand, the cross section is

5 —jkro(l—coseo) 2
o(eo) =7 |1+ 0.0151f e &Dl(eo) - Jwg(eo)] (G6.43)
where when . (6 ) =w. (8 ) = 0 the remaining cross section is that of the
21 2 - ; -
sphere, LN e average cross section over all aspect angles is found by
B 3
2 -jokr (l-cosé )
o - 1+ 0.0151£ [ e © 0 (G.48)
avg o) 52 - Bl J
B
L
2
[w (6 ) - o (8 )] a6 (G.45)

where B, and B, define the interval of integration.
1 2

G-6
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TABLE G-1

Gore Range Average Standard
Number Pressure of Deviation Deviation Deviation
lb/ing (inches) (inches) + (inches)

102 2800 -0.233 to 0.231 -0.029 0.112

4800 -0.078 to 0.589 0.119 0.148

7400 -0.045 to 0.149 0.078 0.088

103 2800 -0.368 to 0.231 -0.070 0.151

4800 ~0.384% to 0.200 -0.018 0.137

7400 -0.098 to 0.168 -0.014 0.052

106 4800 -0.660 to 0.005 -0.239 0.291

7400 -0.517 to 0.031 -0.163 0.198

1 4800 -0.515 to 0.195 -0.045 0.169

7400 -0.647 to 0.221 -0.07 0.219

If it is assumed that the cross section results from only the two gores
indicated in each inflation data plots, that is only the two gores shown are
perturbed significantly to effect the cross section, then the resulting
cross section relative to the sphere for 5.85 XMC are shown in Figures -1
and C-2 for the angle range of -8.5 to +8.5 degrees as a function of pres-
sure. If it is assumed that the balloon was made of samples of the gores as
shown in the static inflation plots along the spherical surface, then the
relative cross section for the various pressures are listed in Table G-2 for
a 5.85 KMC frequency.

TABLE -2
Relative Cross
Pressure Cores Section (db)

2800 102 and 103 2.35
41800 102 and 103 -1.24

106 and 1 3.00
7400 102 and 103 -0.76

106 and 1 2.22
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or
T a = c(m) + 4.5 db,

Thus, the near-field measured cross section must be increased by 4.5 db to
obtain the true cross section.

The antenna taper, previously mentioned in connection with background
levels has an effect upon the data. At the mdximum bistatic angle, that part
of the balloon which is most significant for scattering, i.e., that part in
the neighborhood of the bistatic angle bisector, is at the 9.5° point of the
antenna pattern, with a consequent power loss. The resulting data correction
is:

3 db, at L-Band, horizontal polarization

2.2 db, at L-Band, vertical polarization,
5 db, at C-Bard, horizontal polarization, and
4 db, at C-Band, vertical polarization.

+ 4+ + 4+

These corrections must be applied to the measured cross section at bistatic
angles of 30°. For lesser bistatic angles, we have interpolated linearly.

D.4 THE STATIC INFLATION TESTS

During the period, 1 June - 10 August, 1963, three A-12 balloons were in-
flated. Balloon No. 9 was initially inflated to check out systems. Balloon
No. 11 was then inflated to rupture, Balloon No. 9 was reinflated to rupture,
and Balloon No. 13 was inflated to rupture. R.F. data was obtained for all
three balloons. For balloons No. 9 and No. 11, measurements were made at
1.71 KMC, 5.65 KMC, and 5.85 KMC. The test procedure was to inflate the bal-
loon to a given nominal surface stress, to maintain the stress while a complete
R.F. test sequence was performed, to reduce the stress to approximately 500 psi,
and to perform the test sequence again in this "relaxed" condition. This was
then repeated at a higher pressure, until rupture. It was very quickly observed
that the HV cross sections were, with few exceptional points, well down
in the background.

To analyze the data, it was decided to divide the balloon into 50 intervals.
After making the corrections to the data noted above, the average cross section
on each 5° interval was measured using a planimeter, and the scintillation on
the interval (i.e., the difference, in db, between the maximum and minimum
cross section. There was not enough difference between the 5.65 KMC and 5.85
KMC data to warrant considering both, so 5.85 KMC was chosen. The results are o
shown in Tables D-1 and D-2. The columns headed 0,_5, 10, 15, 20, 25, are the 5
intervals starting from the right (reinforced gore)*. The entries under "m"
are the mean values relative to the nominal balloon, and the entries under "A"
are the scintillations.

Balloon No. 13 was designated to be the prime data balloon. In order to
keep the balloon under stress for shorter periods of time, it was decided to
omit the 5.65 KMC measurement and to perform cross polarization measurements
only as spot checks. Theresults are listed in Table D-3.

lFor Nos. 11 and 13 Balloons. For No. 9 Balloon, the reinforced gore was
on the left. D-7
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TABLE D-1
MEAN VALUES AND SCINTILLATIONS OVER 5° INTERVALS
NO. 11 BALLOON

Pattern # Psi 0 5 10 15 20 25
m A m A m A m A m A m A
46 - 63 750 LV 0 10 -4 28 O 8 -1 7 0 6 0O 4
LH 2 10 -3 30 1 8 0 4 1 3 1 3
cv 1 9 -1 23 -1 14 -2 7 1 9 0 4
Cy 0 9 0 28 -1 19 -3 9 1 7 0o 4
82 - 99 1500 LV 1 8 -2 33 0 6 8 5 1 3 0 4
Ly 1 12 -1 28 1 8 1 6 2 4 1 4
CV 0 9 -2 21 0 13 -4 4 -1 8 -1 5
cH 0 10 -1 21 -1 15 -3 6 -1 9 -1 4
126 - 143 2780 LV 1 8 -1 26 1 6 0O 6 2 3 1 3
Ly 1 7 0 271 2 8 1 5 2 3 2 3
Cy 1 8 0 18 1 9 -2 3 0 4 -1 3
c& 0 9 -1 18 O 8 -1 5 1 5 0 4
162 - 179 4800 L., 1 6 0 19 o0 7 1 4 2 3 1 5
Lﬁ 2 9 0 17 2 4 3 3 4 4 2 3
CV 1 6 1 12 1 3 o 1 0 3 -1 3
Cy 0 4 0 12 1 3 1 2 1 2 0o 2
180 - 197 500 L, 2 9 1 23 1 7 2 3 3 3 2 3
Ly 3 8 1 22 1 5 2 4 4 3 2 3
I 0o 6 -1 16 0 7 -2 3 -1 5 -1 4
Cy 0 7 -1 15 0 7 0o 3 0 5 -1 3
TABLE D-2
MEAN VALUES AND SCINTILLATIONS OVER 5° INTERVALS
NO. 9 BALLOON
Pattern # Psi
m A m A m A m A m A m A
202 - 217 750 LV -1 4 -1 3 -1 6 -3 8 -5 17 -1 8
L, 1 3 1 5 1 5 0 6 -5 23 1 4
cg -3 10 -2 6 -1 9 -4 12 -4 18 -3 19
Cy -2 9 -1 6 -1 12 -1 9 -5 17 -2 20
* Entries under "A" give the peak to peak scintillation in db. This is more convenient
to work with, since the mean does not always fall half way between these extremes.
D-8
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Fattern #
340 - 347
348 - 359
360 - 371
372 - 383
384 - 393

Psi

2800

4800

500

7400

500

TABLE D-3 Cont.

mOA m5A
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0 3 1 5
c 4 1 8
2 1 L 2
2 1 2 2
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1 6 1 6
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D.5 LDISCUSSION OF THE RESULTE

For the prime data ballaon No. 13, we are interested iv. the mearn valuesz
and scirtillation as functions of frequency, pressure, and p.larization. T
exhibit: this dependence, we have chosen to display the data in the following
tables, Table D-4 and Table I-5.

TAERLL D-4

m - REINFORCED GIKE m - SUMMED OVER THER GORES®

ST Iz.v. LH bv uH LV LuH CV bH
400 0 1 4 3 3 9 18 18
1500 0 1 3 3 5 11 -1 1
2800 1 0 1 1 6 5 -6 0
4800 1 2 1 1 4 9 0 2
500 1 1 1 0 -1 5 -1 -1
7400 1 1 1 1 -2 5 -3 -3
500 1 1 1 L L 7 -3 -5

*These sums, when divided by 5, give the average values of m and A for
the unreinforced part of the balloon.

D-10
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TABLE D-5
A — REINFORGCED GORE A - SUMMED OVER OTHER GORES¥
P3Z Lv LH Cy Cy L, Ly Cy Cy
400 3 3 il 12 20 18 32 34
1500 3 3 8 9 15 14 26 28
2800 3 3 5 8 16 14 28 28
4800 2 2 7 7 15 14 22 26
500 3 3 7 7 18 18 31 27
7400 3 4 3 5 14 13 22 27
500 2 3 6 6 16 15 29 30

mhese tables are self-explanatoiry and represent the final reduction of the
data obtained on the No. 13 balloon. They reveal several clear, albeit slight,
dependences upon the parameters. It should be borne in mind that first of all,
the computations exhibited in the tables in this report have been rounded to the
nearest decibel, and that small db differences in cross section can correspond

to larger percentage differences in fields, ard therefore represent significant
physical effects. The data reduction herein has been designed to extract from
the raw data an expression of systematic dependence upon parameters. It re-
raits ar open question to decide the effects of their dependence upon a parti-
cular communications system. Even though the scintillations in the radar cross
sectipn of an A-12 balloon may be large, they are systematic and predictible, and
a program to design them cut of a communications system through the use of
filters is feasible.

*These sums, when divided by 5, give the average values of m and A for
the unreinforced part of the balloon.
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D.6 SAMPLES OF RAW DATA

D-12




